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In industrial plants, installation of new equipment is sub-
ject to financial constraints and has to be economically 
justified — in spite of what seem to be obvious possible 

improvements in performance. For instance, it might be 
difficult for an existing facility to financially justify new 
process measurements and meters such as: 
	 • a new flow measurement that has a higher accuracy 
than the existing one, or an additional one where none cur-
rently exists
	 • a new online analyzer that replaces manual sampling 
and laboratory analysis 
	 • a more-accurate temperature measurement in cases 
where precise temperature control is important 
	 • a new measurement that might identify equipment 
problems earlier.
	 Similar difficulties may occur during the design of a  
new plant. 
	 To justify any investment, consider the operating objec-
tives of a typical large continuous processing plant. The 
goals can be summarized as “The Four Zeros”:
	 • safety — zero serious safety incidents
	 • sustainability — zero significant environmental inci-
dents, excess energy use, and excess waste 
	 • availability/reliability — zero unscheduled downtime
	 • financial optimization — zero lost-profit opportunities.
	 These objectives are pursued by the plant management 
and the overall organization, with specific responsibilities 
delegated to individuals and groups that strive to meet the 

goals through a series of decision cycles. 
	 A typical decision cycle for an existing plant (Figure 1) 
begins with measurements taken throughout the facility to 
determine current conditions or detect a change of state. The 
current and historical data are then analyzed to detect any 
anomalies or deviations from the target values. Based on 
specified criteria, which may be algorithmic or more qualita-
tive in nature, a decision on what scenario to implement is 
reached. The actions are then implemented, and the cycle is 
repeated as necessary. 
	 This framework is commonly used to make planning and 
scheduling decisions related to what products to make, when 
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to make them, and what feedstocks to purchase; decisions 
about the resources required for production; and decisions 
on when to perform maintenance on a particular piece of 
equipment. Reference 1 provides more information on plant 
decision cycles. 
	 New measurements are of value if, and only if, they 
improve decisions in the plant, generally by reducing uncer-
tainty in future predictions. This could involve:
	 • measuring something that was not routinely mea-
sured before (e.g., sensor/transmitter diagnostics, acoustic 
signatures)
	 • increasing the accuracy (reducing uncertainty) of cur-
rent measurements (e.g., replacing volumetric flowmeters 
with more-accurate mass flowmeters) 
	 • obtaining more-frequent measurements by replacing 
manual readings with automated instruments connected to 
an online database (e.g., online compositional analyzers, 
rotating-equipment vibration meters, heat exchanger train 
temperature sensors, vessel wall thickness monitors).
	 The additional data provided by a new measurement may 
then be used to:
	 • compare what the plant is doing now, what it has done 
in the past, and what it is/was expected to do; model-based 
analysis may help with the comparison
	 • predict the impact of future decisions and hence reduce 
risk and uncertainty
	 • improve process control and guide future decision 
cycles.
	 The economic value of the new measurement is equal to 

the expected value of the (improved) decision after the instal-
lation of the measurement device less the value of a decision 
made without the measurement. This article explains how to 
quantitatively evaluate an improvement in measurement by 
calculating the potential return on investment. 
	 Designing the control system to ensure safe and stable 
operation is an important issue. References 2 and 3 pres-
ent a systematic procedure for the selection of controlled 
and manipulated variables and the design of the control 
structure to satisfy these requirements. References 4 and 5 
explain how to choose a sufficient set of measurements to 
minimize instrumentation capital cost under different sets 
of constraints, such as precision, gross error detection, and 
availability.
	 Accurately monitoring plant performance, includ-
ing financial performance, depends on accurate mass and 
energy balances. References 6 and 7 provide an introduction 
to measurement theory in process plants with a particular 
emphasis on improving the accuracy of these balances.

Typical plant decision cycles
	 Figure 2 illustrates some of the major systems in the 
plant that might be impacted by better measurements. These 
can be ranked in approximate priority order as:
	 1. Process and equipment safety shutdown. The highest 
priority is always assuring the safe operation of equipment 
and the process itself. Safety shutdown systems represent an 
automated decision cycle. They generally acquire indepen-
dent, sometimes redundant, measurements (e.g., pressure 

and temperature) to detect when plant 
materials or equipment are in imminent 
danger of failure, and then take auto-
matic action to bring the plant to a stable 
shutdown state. Decision cycles executed 
manually, such as technical reviews to 
determine safe operating and maintenance 
procedures and material selection, also 
depend on the measurements that are 
available.
	 2. Production, quality, and process 
control. Multiple measurements and control 
loops in the plant are designed to regulate 
the plant equipment to meet production 
rate targets and ensure that the products 
are within quality limits in the presence 
of external and internal disturbances and 
changing market demands. Level, flowrate, 
pressure, and temperature are common 
measured variables for these control loops. 
Additional controls may be in place to 
optimize energy usage or reactor condi-
tions while meeting these goals. Setting 
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p Figure 2. These typical plant decision cycles, shown here in priority order (from top to bottom), 
may be improved by better measurements.
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the desired operating modes and targets for these regulatory 
loops is the output of another decision cycle.
	 3. Regulatory reporting. Numerous regulations require 
sites to take specific measurements, often using online ana-
lyzers, and report calculated emissions. Failure to provide 
this information can result in fines or, in the extreme, loss of 
the plant’s operating license. 
	 4. Plant and equipment performance management. 
Production and quality targets cannot be met if the required 
equipment is not operating at an acceptable performance 
level. Many types of measurements, such as vibration and 
corrosion data, allow early detection of performance deterio-
ration or possible failure, and facilitate decisions on when to 
take corrective maintenance action. 
	 5. Logistics, production planning, and scheduling. 
Decisions about the types and quantities of raw materials to 
purchase and when to purchase them, as well as which prod-
ucts to manufacture, all depend on accurate measurement of 
current inventories and current production limits. It is also 
important to consider the projected future performance of 
the plant. 
	 6. Financial management. For a plant to maintain profit-
able operation, it needs accurate measurements of how much 
product was made and sold (so customers can be properly 
invoiced) and the quantity of resources consumed (raw 
materials, energy, catalysts, etc.) so that appropriate financial 
performance indicators can be monitored. 
	 These decision cycles are executed asynchronously, in 
parallel, at different frequencies and sometimes through 
overlapping actions.

Plant and measurement economics 
	 For the purposes of this article, assume that a sufficient 
set of measurements to ensure safe and stable operation and 
meet all regulatory and fiscal requirements already exists in 
the plant (or proposed plant). The focus here is on additional 
measurements that will improve the plant’s performance 
against the operational objectives discussed previously — 
the Four Zeros. 
	 Improved monitoring is often a key to reducing adverse 
health, safety, and environmental (HSE) events. New 
measurements in these areas are generally evaluated on the 
basis of cost versus the amount of risk reduction rather than 
financial return (i.e., the minimum investment that will yield 
the specified reduction in risk). Regulatory-related measure-
ments are also normally chosen based on the minimum 
investment needed to meet applicable requirements. 
	 However, other measurement improvements must be 
financially justified, because companies often have many 
more requests for capital than can be funded. Measurement 
projects compete for funds with other potential investments, 
such as research, new product development, manufacturing 
equipment upgrades, and so on. The economic impacts of 
new measurements must be considered within the context of 
the economic valuation of the plant. For a measurement to 
have positive financial impacts, it must increase the overall 
plant value. 
	 There are many ways of gauging plant value. The 
generally accepted metric (the one used here) is return on 
invested capital (ROIC). Reference 8 provides more infor-
mation on ROIC.
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p Figure 3. As shown in Eq. 1, the return on invested capital (ROIC) is equal to the after-tax net income (ATCA) divided by the invested capital. The primary 
manufacturing variables that affect the ROIC are shown in the top boxes.
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	 Figure 3 depicts the calculation of ROIC, which in equa-
tion form is:

( )=
 

 
(yearly value)

(start of year)

where ATCA is the after-tax net income (cash adjusted), and 
IC is invested capital, which is equal to the sum of the net 
fixed capital, working capital, and all other assets. 
	 The primary manufacturing variables that affect the 
ROIC are shown in the top boxes in Figure 3. Other expense 
items that are not normally within the control of the plant 
staff — depreciation, corporate sales, general and adminis-
trative costs, research and development, interest, and taxes 
— are excluded from this analysis. Fixed capital includes 
the fixed assets in the plant (e.g., the equipment) and new 
project capital. Working capital includes the operating cash, 
inventory (including spares), and financial working capital 
(i.e., accounts receivable minus accounts payable). The pri-
mary variable costs include feedstocks, energy, other operat-
ing costs, and maintenance costs. Revenue is the product of 
the production rate and selling price. 
	 To increase the ROIC, the capital must be reduced and/or 
the profit increased. Figure 4 depicts some of the many ways 
to increase profit and reduce capital spending in order to 
increase the ROIC. Many of these approaches can be carried 
out by adding a new measurement to the process. 
	 Measurements can improve control performance beyond 

basic stability to increase yields of desirable products, 
thereby reducing raw material costs. Enhanced control per-
formance may also allow stable operation closer to maxi-
mum production limits, shorten batch cycle times, reduce the 
time required to transition from one product grade’s speci-
fications to another grade’s specifications, and reduce the 
amount of off-spec material produced. Actual measurements 
of plant disturbances can also improve control performance 
by allowing preemptive compensation action.
	 Expenses can be reduced by lowering energy and utilities 
usage through more-accurate energy balances, more-accurate 
calculation of the costs of operation, and better identification 
of opportunities for improvement. Keeping track of mass 
balances in the plant can also assist in problem identification 
by pinpointing where possible losses might be occurring. 
	 Maintenance costs can be reduced via enhanced moni-
toring of process equipment. The information obtained can 
be used to detect performance deterioration, which allows 
more-efficient timing of equipment maintenance. The result-
ing improved reliability can also help reduce unscheduled 
downtime. 
	 Potential capital savings include both fixed and working 
capital components. Working capital can be reduced through 
more-accurate measurement of current volumes and plant 
performance, which will support planning activities aimed at 
reducing required raw material, intermediates, and product 
inventories. 
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p Figure 4. To increase the ROIC, capital spending must be reduced, or ATCA increased. The top boxes list ways to do this.
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	 It might be obvious to a chemical engineer that an 
improved measurement will enable improved decisions, 
but that is not sufficient to justify implementation of the 
measurement project. It is necessary to perform a financial 
evaluation that calculates the probability that the measure-
ment data will be used to actually improve the decision 
cycle, and based on this probability, the expected value of 
the improvement.

Quantifying financial impact
	 To quantify the financial impact of an improved 
measurement:
	 1. identify the decision cycles that would be affected by 
the measurement
	 2. identify the financial variables that are functions of 
those decision cycles 
	 3. estimate the potential increase in profit or reduction 
in capital that would be obtained through the improved 
measurement
	 4. calculate the return on investment.
	 Return can be calculated by many metrics, such as return 
on investment (ROI), net present value (NPV), or simple 
payback. Reference 9 provides more information on poten-
tial investment analysis as well as calculation procedures.
	 It is often difficult to justify investments that provide 
more-accurate flow measurement than an existing flowmeter. 
Exceptions to this are custody flow measurement, which is 
used for invoicing product shipments and confirming raw 

material purchases, and measurements for which a different 
technology can significantly reduce the effects of compo-
sitional disturbances, such as replacing volumetric mea-
surement of fuel gas with direct mass-flow measurement. 
Example 1 illustrates a case where the improved accuracy 
can be justified.

Example 1: Valuing improved measurement accuracy
	 In this example (Figure 5), there is an unmeasured flow 
in a line that should have no flow. This could be caused by, 
for example, leakage through a valve that should be closed, 
a connection between two tanks that was inadvertently left 
open, or an unauthorized diversion of material. 
	 To calculate the financial impact of improving the accu-
racy of the flow measurements on Streams 1–3, we use the 
concept of “value at risk” to estimate the effect of forecast 
uncertainty. For a specific scenario with certain assumptions 
about business conditions, the value at risk is the maximum 
loss that could occur at a specified probability level. This 
example determines the minimum value of the unmeasured 
flow in Stream 4 that is detectable, with a specified prob-
ability, under different levels of measurement uncertainty. 
	 The decision cycles that would be impacted are process 
control and financial management.
	 Improved measurement accuracy reduces the minimum 
unmeasured flow that can be detected. Table 1 lists the origi-
nal flow readings in column Sio. (For simplicity, no units are 
specified, as the procedure is the same regardless of the units 
of measurement.) 
	 First, we find the best estimate of each stream’s flowrate, 
SiE, that satisfies the mass balance: 

S S SE E E3 1 ( )= +

while minimizing E, the weighted least-squares difference 
between the new and original readings: 

S S S S 3E o E o E o1 1 1

2

2 2 2

2

3 3 3

2( ) ( )
where S3E is the Stream 3 outlet flowrate and S1E and S2E 
are the Stream 1 and Stream 2 inlet flowrates, and w1, w2, 
and w3 are weightings based on the relative measurement 
uncertainties. 

Stream 1

Stream 2
Stream 3

Stream 4 Leak;
Unmeasured; 
Normally Zero 
Flow

p Figure 5. In Example 1, there is flow in a line that should have no  
flow (Stream 4). This could be caused by leakage through a valve that is 
supposed to be closed, an open connection between two tanks that  
should be closed, or an unauthorized diversion of material flow.

Table 1. Investigating a possible leak with varying measurement uncertainties.

Original Flow  
Reading, Sio

Flow,  
Mass-Balanced  
Converged, SiE

Absolute  
Difference,  

Sio – SiE

Flow Measurement 
Uncertainty,  

3% Accuracy

Flow Measurement 
Uncertainty,  

1% Accuracy

Stream 1 45 44.43 0.57 1.35 0.45

Stream 2 55 54.15 0.85 1.65 0.55

Stream 3 96 98.58 2.58 2.88 0.96

Conclusion — — — No Conclusion Leak is Likely
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	 Weighted-least-squares minimization algorithms solve 
these equations iteratively: Initial estimates of S1E and S2E 
are selected, S3E is calculated, and E is calculated, then new 
values for S1E and S2E are chosen and used to calculate new 
values for S3E and E, and this process is repeated until the val-
ues of S1E and S2E that yield a minimum value of E are found.
	 Next, we calculate the uncertainty in the measurements 
and compare the differences. Assuming that the flow-
measuring elements are well maintained and calibrated and 
that there is no reason to expect any of the measurements  
to have a larger error than any other, the weightings w1, w2, 
and w3 are equal and are assumed to be unity in the calcula-
tion of E.
	 The iterative procedure using a standard nonlinear 
optimization algorithm (Microsoft Excel’s Solver) gives the 
converged flow estimates shown in the third column of  
Table 1. The absolute difference between the original 
and converged readings is shown in the fourth column. 
Accuracy, by convention, is normally defined as twice the 
expected standard deviation of the measurement. Columns 
5 and 6 display the uncertainty in the flows for each of the 
streams for two different levels of accuracy. If the flow accu-
racy is 3% (Column 5), no conclusion about the leak can be 
drawn, because the uncertainty values are higher than the 
calculated differences. If, however, the accuracy is 1% (last 
column), the uncertainty values are less than the calculated 
differences, and it is likely there is a leak.
	 We can also develop a plausible estimate of the leak rate 
(Table 2). The mass balance is calculated based on mini-
mizing the weighted-least-squares relative error, using the 
assumed accuracy as the weight of each measured flow and a 
much lower accuracy as the weight for the unknown reading. 
	 Here, we find the best estimate of each stream’s flowrate, 
SiE, that will satisfy the mass balance: 

S S S SE E E E ( )+ = +

and minimize, E, the weighted least-squares difference from 
original readings: 

S S S

S S

( )
( )

	 However, because S4E has a higher uncertainty, its 
weighting, w4, is less than the other weightings. S4o is 
assumed to be zero.
	 Once the magnitude of the leak has been estimated, 
its financial value can be calculated by multiplying that 
estimate by the stream’s value. The value of the improved 
measurements is realized through the recovery of some or all 
of this potential loss. This must be weighed against the cost 
of installation of the more-accurate instruments. 

Example 2: Economically justifying  
an online analyzer
	 A common question with regard to analyzers is whether 
or not there is an economic justification to replace periodic 
manual lab analyses with an online analyzer. For example, 
the refinery crude distillation unit in Figure 6 might add an 
online temperature analyzer to determine the quality of the 
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p Figure 6. In Example 2, an online analyzer could be added to determine 
the quality of the diesel stream in the refinery crude distillation unit.

Table 2. Estimating the leak magnitude in Example 1.

Original Flow  
Reading, Sio

Flow,  
Mass-Balanced  
Converged, SiE

Absolute  
Difference,  

Sio – SiE

Flow Measurement  
Uncertainty,  

1% Accuracy

Stream 1 45 44.81 0.19 0.45

Stream 2 55 54.71 0.29 0.55

Stream 3 96 96.88 0.88 0.96

Stream 4 (Leak) 0 2.64 2.64 —
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diesel stream. This could be what is called a “95% distilla-
tion” analyzer. (The temperature at which 95% of the liquid 
in a standard laboratory batch distillation column has been 
vaporized is known, by convention, as the 95%-distilled 
temperature.) 
	 Clearly, a more-frequent analysis will lead to better 
control. But how much better, and how much is that better 
control worth? The decision cycle involved in this example 
is the production, quality, and process control cycle. 
	 To calculate the benefits of more-frequent analysis, we 
need to identify the disturbances to the control loops that 
make it difficult to maintain control, and compare how the 
control system responds to these disturbances when it relies 
on manual analysis versus more-frequent online analysis. 
This involves evaluating the expected standard deviation 
of the controlled variable and calculating how a reduction 
in standard deviation can be used to increase the economic 
performance of the process. To do this, we use the following 
procedure:
	 1. Develop a model of the process and the control loop, 
including the loop-tuning methodology.
	 2. Develop a model of the disturbances to the control 
loop.
	 3. Determine the expected standard deviation of the loop 
based on each type of measurement (lower accuracy and 
higher accuracy).
	 4. Calculate the financial impact of the reduction 
in standard deviation achieved by the more-accurate 
measurement.
	 Modeling the process and the control loop. For the 
diesel control loop, assume that the loop’s controlled output 
is the 95%-distilled value described earlier. The open-loop 
dynamic response (GP) of the control loop output to the 
manipulated variable (diesel flowrate) is defined as first-
order plus time delay (one of the most common dynamic 
models in process plants).
	 This is expressed in transfer function notation as:

G s
s 1

6P
P

P

P

( ) ( )=
τ +

−

where KP is the open-loop process gain, TP is the intrinsic 
process delay time (measured at the point of product sam-

pling), τP is the process time constant, and s is the transform 
variable. 
	 The observed delay time (TO, measured at the time the 
analysis is available for control action) is a function of the 
intrinsic delay time and the time between samples (TF) plus 
any analysis and communication time. Since a disturbance 
could begin at any time between the taking of samples, the 
average sample delay can be approximated as half the sam-
pling interval. Assuming the analysis time and communica-
tion time are negligible compared to the sampling time, the 
average observed delay time is:

T T TO P F ( )
	 Control loop performance can be evaluated based on 
setpoint response or disturbance rejection or some combina-
tion of the two criteria. Since setpoints for most continuous 
processes are changed infrequently, disturbance rejection is 
used here. The closed-loop response to disturbances depends 
on the type of controller and the method of tuning. However, 
the potential performance is always limited by the amount of 
delay time.
	 The specific response also depends on the control loop 
algorithm. This example uses the popular proportional-
integral (PI) controller algorithm and lambda tuning. The 
adjustable parameters for PI control are the controller gain 
(KC) and the reset time (TR). Lambda is selected for rela-
tively aggressive tuning: 

Tax O P( )λ = × τ

and the process time constant is used as the reset time:

TR P ( )= τ
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p Figure 7. The closed-loop response to disturbances can be illustrated 
by plotting the sensitivity function on a Bode plot. An online analyzer allows 
attenuation of disturbances with a significantly higher range than the 
manual sampling method.

Table 3. Controller tuning constants for Example 2,  
with KP = 1, TP = 20 min, and τP = 15 min.

Analysis TF, min TO, min λ, min TR, min KC

Manual 240 140 280 15 0.0357

Online 20 30 60 15 0.1667
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	 The gain is then calculated by:

K
T

K TC
R

P O( ) ( )=
λ +

	 As these equations indicate, reducing the observed delay 
time allows a higher gain to be used, which will improve the 
controller’s performance. See Ref. 10 for more information 
on lambda tuning.
	 Let’s assume KP = 1, TP = 20 min, and τP = 15 min, that 
manual sampling is performed every 4 hr, and that the online 
analyzer under consideration has a sampling time of 20 min. 
Using the lambda tuning equations (Eqs. 6–8) gives the tun-

ing constants listed in Table 3. 
	 Modeling the loop disturbances. The closed-loop 
response to disturbances can be illustrated in several  
different ways. Plotting the sensitivity function,  
S(s) = 1/[1+GC(s)GP(s)], on a Bode plot provides a  
graphical interpretation.
	 Figure 7 is a Bode plot for this example. Following 
Bode plot convention, the disturbances to the system are 
plotted on the x-axis in units of radians per minute (2π 
times the frequency in cycles per minute), and the ampli-
tude ratio — the ratio of the magnitude of the loop output 
to the magnitude of the input disturbance at a selected 
frequency — is plotted on the y-axis. Both are plotted on 
a log scale to reflect the wide range of values typically 
encountered in plant operation. 
	 The attenuation for a disturbance of a specific frequency 
is equal to the amplitude ratio corresponding to that fre-
quency on the Bode plot. The lowest frequency at which the 
amplitude ratio equals one is called the crossover frequency. 
Disturbances with a frequency lower than the crossover 
frequency will be attenuated by the control loop, while the 
control loop will be ineffective for disturbances with a fre-
quency higher than the crossover.
	 The Bode plot also illustrates the impact of the delay 
time and hence the tuning constants on performance.  
Figure 7 shows that switching to an online analyzer allows 
attenuation of disturbances with a significantly higher 
range, i.e., the highest frequency with an attenuation less 
than one is significantly higher with the online analyzer. 

	 Determining the expected standard 
deviation of the loop. The next step is to 
characterize typical process disturbances 
in order to determine the impact of the 
increased attenuation. Ideally, this is done 
by recording two sets of time-series data 
on the process variable of interest — one 
in open-loop operation and the other under 
control using manual sampling — as 
depicted by the top two graphs in Figure 8. 
Next, the standard deviation of the process 
variable in these two modes is calculated. 
The impact of the increased attenuation can 
be determined by control loop simulation 
that compares the open-loop and manual 
sampling performance to the performance 
of the system with the online analyzer, as 
shown in Figure 8. (Alternatively, a power 
spectrum analysis can be performed on the 
open-loop data to determine the domi-
nant disturbance frequencies, and then the 
expected attenuation calculated directly 
from the Bode plot attenuation ratios.) 
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Article continues on next page
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	 Calculating	the	financial	impact.	Finally, we calculate 
the financial value of the expected reduced standard devia-
tion. This involves first determining the current operational 
buffer between the operating targets and the actual product 
specifications (or other operating limits), and then calculat-
ing how much this operational buffer can be reduced as a 
result of the lower standard deviation without increasing the 
probability of violating the product specification (11,	12). 
This is illustrated in Figure 9. 
 The product specification is based on the distillation 
curve for the product, specifically the temperature at which 
95% of the product has been distilled. The specification 
value here is 319°F. The two bell-shaped curves represent 
the observed frequency distribution of product analyses. 
The curve with a standard deviation of 2.07 represents the 
operation with manual sampling. To avoid making off-spec 
product, the actual operating target is set below the specifi-
cation, at a value of 309°F. The curve with a standard devia-
tion of 1.6 represents operation with automatic analysis, 
which would allow the operating target to be increased to 
311°F at the same (or lower) probability of violating the 
product specification limit. This will enable more of the 
material that was previously removed as lower-value heavy 
gas oil (HGO) to be converted into the more-valuable diesel 
product (Figure 6).
 Assume that the crude unit has a capacity of 
200,000 bbl/day, that the diesel’s value is $10/bbl higher 
than that of the HGO, and that increased diesel yield can be 
achieved 50% of the time. Assume also that the operating 
target increase due to the lower standard deviation allows 
a 0.1% increase in the expected yield of diesel (at the same 
probability of violating the product specification). 
 The financial value of the improved measurement is 
determined by multiplying the following quantities:
 • the daily production rate 
 • the number of operating days per year 
 • the differential product value 
 • the fraction of time that the benefit can be claimed 
 • the expected yield increase. 

 Numerically, this is:
Value = 200,000 bbl/d × 350 d/yr × $10/bbl × 0.5 × 0.001  
 = $350,000/yr
 If the expected installed cost of the analyzer is $250,000, 
then the simple payback is 8.5 months. 
 As stated previously, these specific quantitative results 
are for the selected control algorithm and tuning constants. 
The conclusion, though, is independent of these factors: 
Reducing excessive delay time in a loop always increases 
the potential attainable performance.

Closing thoughts
 Determining the financial justification for additional 
measurements in existing or proposed new process plants  
is a common issue. New measurements are of financial 
value only if they increase the economic value of the plant. 
This increase is created through improving predictive 
outputs of the plant decision cycles. Measurement invest-
ments can be evaluated by identifying the decision cycles 
impacted and quantifying the improved financial perfor-
mance expected. CEP
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