Betriebsanleitung 00809-0105-4108, Rev BA März 2014

Rosemount[®] Druckmessumformer 2088

mit wählbarem HART[®] Protokoll, Version 5 und 7

ROSEMOUNT[°]

Rosemount Druckmessumformer 2088

🔥 WARNUNG

Lesen Sie diese Betriebsanleitung, bevor Sie mit dem Produkt arbeiten. Bevor Sie das Produkt installieren, in Betrieb nehmen oder warten, sollten Sie über ein entsprechendes Produktwissen verfügen, um somit eine optimale Produktleistung zu erzielen sowie die Sicherheit von Personen und Anlagen zu gewährleisten.

Technische Unterstützung erhalten Sie unter:

Kundendienst Technischer Kundendienst, Angebote und Fragen zu Aufträgen. USA – 1-800-999-9307 (7 bis 19 Uhr CST) Asien-Pazifik – +65 777 8211 Europa/Naher Osten/Afrika – +49 (0) 8153 9390 Response Center Nordamerika Geräteservice 1-800-654-7768 (24 Stunden – inkl. Kanada) Außerhalb dieser Regionen wenden Sie sich bitte an Emerson Process Management.

VORSICHT

Die in diesem Dokument beschriebenen Produkte sind NICHT für nukleare Anwendungen qualifiziert und ausgelegt. Werden Produkte oder Hardware, die nicht für nukleare Anwendungen qualifiziert sind, im nuklearen Bereich eingesetzt, kann das zu ungenauen Messungen führen.

Informationen zu nuklear qualifizierten Rosemount Produkten erhalten Sie von Emerson Process Management.

Inhalt

Abschnitt 1: Einführung

1.1	Verwendung dieser Betriebsanleitung1
1.2	Modellpalette
	1.2.1 Rosemount Druckmessumformer 2088G für Überdruck2
	1.2.2 Rosemount Druckmessumformer 2088A für Absolutdruck2
1.3	Flussdiagramm, HART Installation3
1.4	Messumformer Übersicht
1.5	Service-Unterstützung6
1.6	Produkt Recycling/Entsorgung6

Abschnitt 2: Konfiguration

2.1 Übersicht über die Konfiguration	7
2.2 Sicherheitshinweise	7
2.3 Systemverfügbarkeit	8
2.3.1 Prüfen des korrekten Gerätetreibers	8
2.4 Richtlinien für die Konfiguration	9
2.4.1 Konfiguration in der Werkstatt	9
2.4.2 Konfigurationsgeräte	10
2.4.3 Umschalten des Messkreises auf Handbetrieb	12
2.5 Konfiguration prüfen	12
2.5.1 Konfiguration mittels Handterminal überprüfen	12
2.5.2 Konfiguration mittels AMS Device Manager überprüfen	13
2.5.3 Konfiguration mittels Bedieninterface überprüfen	13
2.5.4 Konfiguration der Prozessvariablen überprüfen	13
2.6 Grundeinstellung des Messumformer	14
2.6.1 Druckeinheiten einstellen	14
2.6.2 Messumformer neu einstellen	15
2.6.3 Dämpfung	19
2.7 Konfigurieren des Digitalanzeigers	
2.8 Detaillierte Einrichtung des Messumformers	
2.8.1 Alarm- und Sättigungswerte konfigurieren	
2.8.2 Konfigurieren einer skalierten Variable	24
2.8.3 Neuzuordnen von Gerätevariablen	
2.9 Durchführen von Messumformertests	
2.9.1 Alarmwert überprüfen	
2.9.2 Analog-Messkreistest durchführen	27
2.9.3 Gerätevariablen simulieren	

2.10Burst-Betriebsart konfigurieren	.29
2.11Herstellung der Multidrop Kommunikation	.30
2.11.1Ändern der Messumformeradresse	.31
2.11.2Kommunizieren mit einem Messumformer in der Multidrop-Betriebsart	.32

Abschnitt 3: Hardware-Installation

3.1 Übersicht	33
3.2 Sicherheitshinweise	33
3.3 Besondere Hinweise	35
3.3.1 Informationen zur Installation	35
3.3.2 Informationen zur Messstellenumgebung	35
3.3.3 Mechanische Informationen	35
3.4 Installationsverfahren	35
3.4.1 Messumformer montieren	35
3.4.2 Impulsleitungen	38
3.4.3 Prozessanschlüsse	40
3.4.4 Prozessanschluss mit Inline-Flansch	40
3.5 Rosemount Ventilblock 306	41
3.5.1 Installation des integrierten Ventilblocks Rosemount 306	41

Abschnitt 4: Elektrische Installation

4.1 Übersicht	
4.2 Sicherheitshinweise	43
4.3 Digitalanzeiger/Bedieninterface	
4.3.1 Digitalanzeiger/Bedieninterface drehen	
4.4 Sicherheitsfunktion des Messumformers konfigurieren	45
4.4.1 Sicherheitsschalter einstellen	45
4.4.2 HART Sperre	
4.4.3 Sperre der Einstelltasten	
4.4.4 Kennwort für Bedieninterface	
4.5 Messumformeralarm setzen	
4.6 Elektrische Anforderungen	
4.6.1 Montage des Kabelschutzrohrs	
4.6.2 Spannungsversorgung	
4.6.3 Verdrahtung des Messumformers	
4.6.4 Erdung des Messumformers	

Abschnitt 5: Betrieb und Wartung

5.1	Übersicht	55
5.2	Sicherheitshinweise	55
	5.2.1 Warnungen	55
5.3	Empfohlene Kalibriervorgänge	56
5.4	Übersicht über die Kalibrierung	56
	5.4.1 Bestimmung der erforderlichen Abgleichvorgänge des Sensors	57
	5.4.2 Kalibrierintervall festlegen	58
5.5	Drucksignal abgleichen	59
	5.5.1 Übersicht über den Sensorabgleich	59
	5.5.2 Sensorabgleich durchführen	60
	5.5.3 Zurücksetzen auf Werksabgleich – Sensorabgleich	62
5.6	Analogausgang abgleichen	63
	5.6.1 Digital/Analog-Abgleich (Abgleich des 4-20 mA/1-5-V-Ausgangs) durchführen	64
	5.6.2 Skalierten Digital/Analog-Abgleich (Abgleich des 4-20-mA/1-5-V-Ausgangs) durchführen	65
	5.6.3 Zurücksetzen auf Werksabgleich – Analogausgang	66
5.7	HART Version umschalten	67
	5.7.1 Umschalten der HART Version mittels generischem Menü	67
	5.7.2 Umschalten der HART Version mittels Handterminal	67
	5.7.3 Ändern der HART Version mittels AMS Device Manager	68
	5.7.4 Umschalten der HART Version mittels Bedieninterface	68

Abschnitt 6: Störungsanalyse und -beseitigung

6.1	Übersicht	69
6.2	Sicherheitshinweise	69
	6.2.1 Warnungen	
6.3	Diagnosemeldungen	71
	6.3.1 Diagnosemeldung: Fehler – Jetzt beheben	71
	6.3.2 Diagnosemeldung: Wartung – Bald beheben	72
	6.3.3 Diagnosemeldungen: Warnhinweis	73
6.4	Demontageverfahren	74
	6.4.1 Messumformer außer Betrieb nehmen	74
	6.4.2 Anschlussklemmenblock ausbauen	74
	6.4.3 Elektronikplatine ausbauen	74
	6.4.4 Sensormodul aus dem Elektronikgehäuse ausbauen	75
6.5	Montageverfahren	75
	6.5.1 Elektronikplatine anbringen	76
	6.5.2 Anschlussklemmenblock einbauen	76
	6.5.3 Ablass-/Entlüftungsventil einbauen	76

Anhang A: Technische Daten

A.1 Leistungsdaten
A.1.1 Referenzgenauigkeit (URL = obere Messbereichsgrenze)77
A.1.2 Überspannungsschutz
A.1.3 Allgemeine Spezifikationen78
A.2 Funktionsdaten
A.2.1 Ausgang
A.2.2 Einsatzbereiche
A.2.3 Spannungsversorgung78
A.2.4 Bürdengrenzen79
A.2.5 Temperaturgrenzen80
A.3 Geräteausführung
A.3.1 Mediumberührte Teile
A.3.2 Nicht mediumberührte Teile81
A.4 Maßzeichnungen
A.5 Bestellinformationen83
A.6 Optionen

Anhang B: Produkt-Zulassungen

B. 1	Zugelassene Herstellungsstandorte) 1
B.2	Informationen zu EU-Richtlinien) 1
B.3	Ex-Zulassungen	€1
B. 4	Zulassungs-Zeichnungen	9 9
	B.4.1 Factory Mutual 02088-1018) 9
	B.4.2 Canadian Standards Association (CSA) 02088-1024 10)6

Anhang C: Handterminal-Menüstrukturen und -Funktionstastenfolgen

C.1 Handterminal-Menüstrukturen	109
C.2 Handterminal-Funktionstasten	118

Anhang D: Bedieninterface

D.1 Bedieninterface-Menüstruktur	119
D.2 Bedieninterface-Menüstruktur – Erweitertes Menü	121
D.3 Eingabe von Ziffern	123
D.4 Eingabe von Text	124

Abschnitt 1 Einführung

Verwendung dieser Betriebsanleitung	Seite 1
Modellpalette	Seite 2
Flussdiagramm, HART Installation	Seite 3
Messumformer Übersicht	Seite 4
Service-Unterstützung	Seite 6
Produkt Recycling/Entsorgung	Seite 6

1.1 Verwendung dieser Betriebsanleitung

Die einzelnen Abschnitte in dieser Betriebsanleitung liefern Ihnen die Informationen, die Sie für Installation, Betrieb und Wartung des Rosemount 2088 benötigen. Die Abschnitte sind folgendermaßen untergliedert:

Abschnitt 2: Konfiguration enthält Anweisungen für die Installation und den Betrieb der Rosemount Messumformer 2088. Informationen über Softwarefunktionen, Konfigurationsparameter und Online-Variablen sind ebenfalls in diesem Abschnitt enthalten.

Abschnitt 3: Hardware-Installation enthält Anweisungen zur mechanischen Installation sowie Upgrade-Optionen vor Ort.

Abschnitt 4: Elektrische Installation enthält Anweisungen zur elektrischen Installation sowie Upgrade-Optionen vor Ort.

Abschnitt 5: Betrieb und Wartung enthält detaillierte Informationen über die Einstellung und Änderung der HART Versionen.

Abschnitt 6: Störungsanalyse und -beseitigung enthält Verfahrensweisen für Störungsanalyse und -beseitigung für die am häufigsten auftretenden Betriebsprobleme.

Anhang A: Technische Daten enthält technische Daten und Spezifikationen sowie Bestellinformationen.

Anhang B: Produkt-Zulassungen enthält Informationen über eigensichere Zulassungen, die europäische ATEX-Richtlinie und Zulassungszeichnungen.

Anhang C: Handterminal-Menüstrukturen und -Funktionstastenfolgen enthält die vollständigen Menüstrukturen und die Funktionstastenfolgen für die Inbetriebnahme.

Anhang D: Bedieninterface enthält die detaillierten Menüstrukturen des Bedieninterface.

1.2 Modellpalette

In dieser Betriebsanleitung werden die folgenden Rosemount Druckmessumformer 2088 beschrieben:

1.2.1 Rosemount Druckmessumformer 2088G für Überdruck

Zur Messung von Überdruck bis 275,8 bar (4000 psi).

1.2.2 Rosemount Druckmessumformer 2088A für Absolutdruck

Zur Messung von Absolutdruck bis 275,8 bar (4000 psi).

1.3 Flussdiagramm, HART Installation

Abbildung 1-1. HART Installation – Flussdiagramm

Fertig

1.4 Messumformer Übersicht

Die Rosemount Messumformer 2088G und Rosemount 2088A werden als Überdruck- (GP) und Absolutdruck- (AP) Messgeräte angeboten. Beim Rosemount Modell 2088 kommt die piezoresistive Sensortechnologie für Absolutdruck- (AP) und Überdruckmessungen (GP) zum Einsatz.

Die Hauptkomponenten des Rosemount 2088 sind das Sensormodul und das Elektronikgehäuse. Das Sensormodul beinhaltet das mit Öl gefüllte Sensorsystem (bestehend aus Trennmembran, Ölfüllung und Sensor) sowie die Sensorelektronik. Die Sensorelektronik ist im Sensormodul eingebaut und besteht aus einem Temperatursensor, einem Speichermodul und dem Analog/Digital-Signalwandler (A/D-Wandler). Die elektronischen Signale vom Sensormodul werden zur Ausgangselektronik im Elektronikgehäuse gesendet. Das Elektronikgehäuse enthält die Ausgangs-Elektronikplatine, die optionalen externen Konfigurationstasten und den Anschlussklemmenblock. Ein vereinfachtes Blockschaltbild des Rosemount Modells 2088 finden Sie in Abbildung 1-3 auf Seite 5.

Wenn die Trennmembran des Rosemount 2088 mit Druck beaufschlagt wird, wird der Sensor durch das Öl ausgelenkt, was eine Änderung der Kapazität oder des Spannungssignals zur Folge hat. Dieses Signal wird dann durch die Signalverarbeitungsfunktion in ein digitales Signal umgewandelt. Der Mikroprozessor berechnet aus den von der Signalverarbeitung ausgegebenen Signalen den korrigierten Messumformerausgang. Dieses Signal wird dann im D/A-Wandler wieder zu einem analogen Signal umgesetzt, mit dem HART Signal überlagert und als 4-20 mA ausgegeben.

Ein optionaler Digitalanzeiger kann direkt an die Anschlussplatine angeschlossen werden, die direkten Zugang zu den Signalanschlussklemmen bietet. Der Anzeiger gibt den Ausgang und abgekürzte Diagnosemeldungen aus. Ein Gehäusedeckel aus Glas ist im Lieferumfang des Anzeigers enthalten. Für den 4-20-mA-HART-Ausgang verfügt der Digitalanzeiger über ein zweizeiliges Display. Die erste Zeile zeigt den tatsächlich gemessenen Wert und die zweite Zeile mit sechs Zeichen zeigt die physikalische Einheit des Wertes an. Auf dem Digitalanzeiger können außerdem Diagnosemeldungen erscheinen.

Hinweis

Der Digitalanzeiger verfügt über ein Display mit 5x6 Zeichen zur Ausgabe von Ausgangs- und Diagnosemeldungen. Das Bedieninterface verfügt über ein Display mit 8x6 Zeichen zur Ausgabe von Ausgangs- und Diagnosemeldungen sowie Bedieninterface-Menüstrukturen. Das Bedieninterface verfügt außerdem an der Vorderseite der Displayplatine über zwei Einstelltasten. Siehe Abbildung 1-2.

Abbildung 1-2. Digitalanzeiger/Bedieninterface

Abbildung 1-3. Betriebs-Blockschaltbild

A. Sensormodul

- B. Elektronikplatine
- C. 4-20-mA-Signal zum Kontrollsystem

D. Handterminal

1.5 Service-Unterstützung

Innerhalb der USA wenden Sie sich bitte an das Emerson Process Management Instrument and Valve Response Center unter der gebührenfreien Rufnummer 1-800-654-RSMT (7768). Dieses Center steht Ihnen rund um die Uhr mit Informationen und Materialien zur Verfügung.

Sie müssen die Modell- und Seriennummern des Produktes bereithalten, und es wird Ihnen eine Rücksendegenehmigungsnummer für das Produkt (Return Material Authorization [RMA]) zugeteilt. Sie werden auch nach dem Prozessmedium gefragt, dem das Produkt zuletzt ausgesetzt war.

Für Anweisungen zur Rücksendung von Produkten außerhalb der USA setzen Sie sich bitte mit Emerson Process Management des jeweiligen Landes in Verbindung (siehe Rückseite).

Innerhalb Deutschlands setzen Sie sich bezüglich Service Unterstützung sowie Reparatur bitte mit folgender Nummer oder Adresse in Verbindung: Emerson Process Management GmbH & Co. OHG, Argelsrieder Feld 3, 82234 Weßling, Tel.: +49 (0) 8153 939-0 Fax: +49 (0) 8153 939-172 (siehe Rückseite).

▲ VORSICHT

Personen, die Produkte handhaben, die gefährlichen Substanzen ausgesetzt sind, können Verletzungen vermeiden, wenn Sie über die Gefahren beim Umgang mit solchen Produkten informiert und sich dieser Gefahren bewusst sind. Dem zurückgeschickten Produkt muss eine Kopie des Sicherheitsdatenblattes (Material Safety Data Sheet/MSDS) für jede Substanz beigefügt werden.

Die Mitarbeiter des Emerson Process Management Instrument and Valve Response Center können Ihnen die zusätzlichen Informationen und Verfahren erläutern, die bei der Rücksendung von Produkten, die gefährlichen Substanzen ausgesetzt wurden, zu beachten sind.

1.6 Produkt Recycling/Entsorgung

Recycling und Entsorgung des Gerätes und der Verpackung müssen entsprechend den lokalen und nationalen Gesetzgebung/Vorschriften durchgeführt werden.

Abschnitt 2 Konfiguration

Übersicht über die Konfiguration	Seite 7
Sicherheitshinweise	Seite 7
Systemverfügbarkeit	Seite 8
Richtlinien für die Konfiguration	Seite 9
Konfiguration prüfen	Seite 12
Grundeinstellung des Messumformer	Seite 14
Konfigurieren des Digitalanzeigers	Seite 20
Detaillierte Einrichtung des Messumformers	Seite 21
Durchführen von Messumformertests	Seite 27
Burst-Betriebsart konfigurieren	Seite 29
Herstellung der Multidrop Kommunikation	Seite 30

2.1 Übersicht über die Konfiguration

Dieser Abschnitt enthält Informationen zur Inbetriebnahme und zu Arbeiten, die vor der Installation vorgenommen werden sollten. Außerdem sind Informationen zu Arbeiten enthalten, die entsprechend der Beschreibung in "Durchführen von Messumformertests" auf Seite 27 nach der Installation vorgenommen werden sollten.

Die Anweisungen für das Handterminal, den AMS[™] Device Manager und das Bedieninterface dienen der Durchführung von Konfigurationsfunktionen. Zur Erleichterung sind die Funktionstastenfolge für das Handterminal und die Bedieninterface-Menüstruktur bei jeder Funktion mit angegeben.

Die vollständigen Handterminal-Menüstrukturen und -Funktionstastenfolgen sind in AnhangC: Handterminal-Menüstrukturen und -Funktionstastenfolgen zu finden. Die Bedieninterface-Menüstrukturen sind in AnhangD: Bedieninterface zu finden.

2.2 Sicherheitshinweise

Zur Sicherheit für den Bediener können Verfahren und Anweisungen in diesem Kapitel besondere Vorsorge erfordern. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol (A) markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

A WARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen.

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend den lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation des Rosemount 2088 finden Sie im Abschnitt "Produkt-Zulassungen" in dieser Betriebsanleitung.

- Vor Anschluss eines Handterminals in einer explosionsgefährdeten Umgebung sicherstellen, dass die Geräte im Messkreis in Übereinstimmung mit den Vorschriften für eigensichere oder keine Funken erzeugende Feldverdrahtung installiert sind.
- Bei einer Installation mit Ex-Schutz/druckfester Kapselung die Messumformer Gehäusedeckel nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Stromschläge können schwere oder tödliche Verletzungen verursachen.

 Kontakt mit Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

2.3 Systemverfügbarkeit

- Bei Verwendung von HART-basierten Leit- oder Asset-Management-Systemen die HART Fähigkeiten dieser Systeme vor der Inbetriebnahme und Installation des Messumformers überprüfen. Nicht alle Systeme können mit Geräten mit HART Version 7 kommunizieren.
- Anleitungen zum Ändern der HART Version des Messumformers sind unter "HART Version umschalten" auf Seite 67 zu finden.

2.3.1 Prüfen des korrekten Gerätetreibers

Überprüfen, ob der neueste Device Driver (DD/DTM) auf den Systemen geladen ist, damit eine ordnungsgemäße Kommunikation sichergestellt ist.

- 1. Den neuesten DD von www.emersonprocess.com oder www.hartcomm.org herunterladen.
- 2. Im Dropdown-Menü "Browse by Member" den Geschäftsbereich "Rosemount" von Emerson Process Management auswählen.
- 3. Das gewünschte Produkt auswählen:
 - a. Den korrekten Treiber anhand der HART Universalversions- und Geräteversionsnummern in Tabelle 2-1 suchen.

Tabelle 2-1. Rosemount 2088 Geräteversionen und -dateien

	gerät ide	ntifizieren	device driver	suchen	anweisungen lesen	funktionalität überprüfen
Software- freigabeda- tum	NAMUR software- version ⁽¹⁾	HART software- version ⁽²⁾	HART universalver- sion	Gerätever- sion ⁽³⁾	Betriebsanlei- tung dokumen- tennummer	softwareände- rungen
	1.0.0	01	7	10	00809-0100-4108	Siehe Fußnote ⁽⁴⁾
Januar 2013			5	9		bzgl. der Liste der Änderungen.
Januar 1998	k. A.	178	5	3	00809-0100-4690	k. A.

(1) Die NAMUR Softwareversion ist auf dem Metallschild des Geräts angegeben.

(2) Die HART Softwareversion kann mit einem HART fähigen Konfigurationstool gelesen werden.

(3) Die Gerätetreiber-Dateinamen verwenden Geräte- und DD-Version, z. B. 10_01. Das HART Protokoll ist so ausgelegt, dass ältere Gerätetreiberversionen weiterhin mit neuen HART Geräten kommunizieren können. Damit auf die neuen Funktionen zugegriffen werden kann, muss der neue Device Driver heruntergeladen werden. Es wird empfohlen, neue Device Driver-Dateien herunterzuladen, damit der komplette Funktionsumfang genutzt werden kann.

(4) HART Version 5 oder 7 wählbar, Bedieninterface, skalierte Variable, konfigurierbare Alarme, erweiterte Messeinheiten.

2.4

Richtlinien für die Konfiguration

▲ VORSICHT

Alle Hardwareeinstellungen des Messumformers bereits vor der Installation in der Werkstatt vornehmen, um zu vermeiden, dass die Messumformerelektronik der Betriebsatmosphäre ausgesetzt wird.

Der Rosemount 2088 kann vor oder nach der Installation konfiguriert werden. Durch Konfigurieren des Messumformers in der Werkstatt mit einem Handterminal, dem AMS Device Manager oder dem Bedieninterface wird gewährleistet, dass alle Komponenten des Messumformers vor der Installation ordnungsgemäß funktionieren. Sicherstellen, dass der Sicherheitsschalter zur Konfiguration in der entriegelten Position () steht. Siehe Abbildung 4-2 auf Seite 45 bezüglich der Positionierung des Schalters.

2.4.1 Konfiguration in der Werkstatt

Zur Konfiguration des Messumformers in der Werkstatt sind eine Spannungsversorgung, ein Handterminal, der AMS Device Manager oder ein Bedieninterface (Option M4) erforderlich. Die Ausrüstung wie in Abbildung 2-1 unten dargestellt verdrahten. Zur fehlerfreien HART Kommunikation muss ein Widerstand von mind. 250 Ω zwischen Messumformer und Spannungsversorgung vorhanden sein. Einzelheiten hierzu sind unter "Spannungsversorgung" auf Seite 49 zu finden. Die Anschlussleitungen des Handterminals an den Klemmen mit der Bezeichnung "COMM" am Anschlussklemmenblock (bzw. an der 1-5-V-Konfiguration) anschließen (siehe Abbildung 2-1 auf Seite 10). Das Handterminal wird an die Klemmen mit der Bezeichnung "VOUT/COMM" angeschlossen.

Abbildung 2-1. Verdrahtung des Messumformers (4-20 mA HART)

A. VDC Versorgungsspannung B. R_L ≥ 250 (nur für die HART Kommunikation erforderlich)

2.4.2 Konfigurationsgeräte

Konfiguration mittels Handterminal

Das Handterminal verfügt über zwei Interface-Typen: Herkömmliches und Dashboard-Interface. Alle mit einem Handterminal durchgeführten Schritte werden unter Verwendung des Dashboard-Interface beschrieben. Abbildung 2-3 auf Seite 11 zeigt das Device Dashboard-Interface. Wie bereits in Abschnitt 2.3-Systemverfügbarkeit erklärt, müssen die neuesten DD auf dem Handterminal installiert sein. Die neuesten DDs können von der DD-Bibliothek unter www.emersonprocess.com oder www.hartcomm.org heruntergeladen werden.

Die Handterminal-Menüstrukturen und -Funktionstastenfolgen sind in AnhangC: Handterminal-Menüstrukturen und -Funktionstastenfolgen zu finden.

Abbildu	ng 2-3. Geräte Dashboar	d	
	← <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	>>> 🖹 🗙]
	2088 FT 45B		
	Online		-
	 Overview Configure Service Tools 		
	S	AVE	

Konfiguration mittels AMS Device Manager

Um die vollen Konfigurationsmöglichkeiten von AMS Device Manager nutzen zu können, müssen die neuesten Gerätetreiber (DD) Treiber für diesen Messumformer geladen sein. Den neuesten DD von www.emersonprocess.com oder www.hartcomm.org herunterladen.

Hinweis

Alle mit AMS Device Manager durchgeführten Schritte werden unter Verwendung der Version 11.5 beschrieben.

Konfiguration mittels Bedieninterface

Das Bedieninterface erfordert die Bestellung von Optionscode M4. Zum Aktivieren des Bedieninterface eine der Konfigurationstasten drücken. Die Konfigurationstasten sind entweder am Digitalanzeiger (den Gehäusedeckel abnehmen) oder unter dem oberen Typenschild des Messumformers zu finden. Die Funktionalität der Konfigurationstasten ist in Tabelle 2-2 beschrieben und die Anordnung der Konfigurationstasten ist in Abbildung 2-4 dargestellt. Bei Verwendung des Bedieninterface zur Konfiguration erfordern zahlreiche Funktionen das Durchlaufen mehrerer Bildschirmmenüs. Die eingegebenen Daten werden für jeden einzelnen Bildschirm gespeichert; das Bedieninterface zeigt dies jeweils durch die blinkende Meldung "SAVED" auf dem Digitalanzeiger an.

Die Bedieninterface-Menüstrukturen sind in AnhangD: Bedieninterface zu finden.

Abbildung 2-4. Bedieninterface-Konfigurationstasten

Tabelle 2-2. Tastenfunktionen des Bedieninterface

- .	ÉXÍT MENUP No yes	ÉXÎT MENU ↓ ↓	
Links	No (Nein) BLÄTTERN		
Rechts	Yes (Ja)	EINGABE	

2.4.3 Umschalten des Messkreises auf Handbetrieb

Immer Daten gesendet/empfangen werden oder der Ausgang des Messumformers geändert wird, kann das den Messkreis stören. Hierfür den Messkreis auf Manuell setzen. Sollte dies notwendig sein, erfolgt eine Aufforderung durch das Handterminal, den AMS Device Manager oder das Bedieninterface, den Messkreis auf Handbetrieb zu setzen. Die Bestätigung dieser Aufforderung setzt den Messkreis nicht automatisch auf Manuell, sondern dient nur zur Erinnerung, den Messkreis in einem eigenen Arbeitsschritt auf Manuell zu setzen.

2.5 Konfiguration prüfen

Es wird empfohlen, bestimmte Konfigurationsparameter zu prüfen, bevor der Messumformer im Prozess installiert wird. Diese Parameter werden für jedes Konfigurationstool im Einzelnen beschrieben. Die für jedes Konfigurationstool relevanten Schritte je nach verfügbarem Tool ausführen.

2.5.1 Konfiguration mittels Handterminal überprüfen

Die in Tabelle 2-3 angegebenen Konfigurationsparameter müssen vor der Installation des Messumformers überprüft werden. Eine vollständige Liste der Konfigurationsparameter, die mit einem Handterminal überprüft und konfiguriert werden können, ist in AnhangC: Handterminal-Menüstrukturen und -Funktionstastenfolgen zu finden. Funktionstastenfolgen für den neuesten DD sind in Tabelle 2-3 angegeben. Um Funktionstastenfolgen für ältere DDs zu erhalten, wenden Sie sich an Ihr zuständiges Vertriebsbüro von Emerson Process Management.

Tabelle 2-3. Geräte-Dashboard-Funktionstastenfolge für den Rosemount 2088

Die angegebenen Funktionstastenfolge vom *HOME*-Bildschirm aus eingeben.

	Funktionstastenfolge	
Funktion	HART 7	HART 5
Alarm- und Sättigungswerte	2, 2, 2, 5	2, 2, 2, 5
Dämpfung	2, 2, 1, 1, 5	2, 2, 1, 1, 5
Primärvariable	2, 1, 1, 4, 1	2, 1, 1, 4, 1
Messbereichswerte	2, 1, 1, 4	2, 1, 1, 4
Messstellenkennzeichnung	2, 2, 7, 1, 1	2, 2, 7, 1, 1
Übertragungsfunktion	2, 2, 1, 1, 6	2, 2, 1, 1, 6
Einheiten	2, 2, 1, 1, 4	2, 2, 1, 1, 4

2.5.2 Konfiguration mittels AMS Device Manager überprüfen

Mit der rechten Maustaste auf den Messumformer klicken und dann **Configuration Properties** (Eigenschaften konfigurieren) aus dem Menü auswählen. Die einzelnen Registerkarten mit den jeweiligen Parametern durchblättern, um die Messumformerkonfiguration zu überprüfen.

2.5.3 Konfiguration mittels Bedieninterface überprüfen

Eine der Konfigurationstasten drücken, um das Bedieninterface zu aktivieren. **VIEW CONFIG** (Konfiguration anzeigen) auswählen, um die nachfolgenden Parameter zu überprüfen. Die Konfigurationstasten verwenden, um durch das Menü zu navigieren. Folgende Parameter müssen vor der Installation überprüft werden:

- Messstellenkennzeichnung
 - Primärvariable

Einheiten

- Messbereichswerte
- Übertragungsfunktion
- Dämpfung
- Alarm- und Sättigungswerte

2.5.4 Konfiguration der Prozessvariablen überprüfen

Dieser Abschnitt beschreibt, wie überprüft werden kann, ob die richtigen Prozessvariablen ausgewählt wurden.

Prozessvariablen mittels Handterminal überprüfen

Die folgende Funktionstastenfolge vom *HOME*-Bildschirm aus eingeben:

Geräte-Dashboard-Funktionstastenfolge

3, 2, 1

Prozessvariablen mittels AMS Device Manager überprüfen

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Overview** (Übersicht) aus dem Menü auswählen.
- 2. Auf die Schaltfläche **All Variables** (Alle Variablen) klicken, um die Primär-, Sekundär-, Tertiär- und Quartärvariable anzuzeigen.

2.6 Grundeinstellung des Messumformer

Dieser Abschnitt enthält die für die Grundeinstellung eines Druckmessumformers erforderlichen Schritte.

2.6.1 Druckeinheiten einstellen

Der Befehl Druckeinheit setzt die Messeinheit für den ausgegebenen Druck.

Einstellen von Druckeinheiten mittels Handterminal

Die folgende Funktionstastenfolge vom *HOME*-Bildschirm aus eingeben:

Geräte-Dashboard-Funktionstastenfolge	2, 2, 1, 1, 4
---------------------------------------	---------------

Druckeinheiten mittels AMS Device Manager einstellen

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) auswählen.
- 2. Auf **Manual Setup** (Manuelle Einrichtung) klicken und die gewünschte Einheit aus dem Dropdown-Menü *Pressure Units* (Druckeinheiten) auswählen.
- 3. Zum Abschluss auf **Send** (Senden) klicken.

Druckeinheiten mittels Bedieninterface einstellen

Den in Abbildung 2-5 auf Seite 15 dargestellten Ablauf verwenden, um die gewünschte Druckund Temperatureinheit auszuwählen. Die Tasten **SCROLL** und **ENTER** verwenden, um die gewünschte Einheit auszuwählen. Die Auswahl entsprechend der Angabe auf dem Digitalanzeiger durch Drücken von **SAVE** speichern.

Abbildung 2-5. Einheiten mittels Bedieninterface auswählen

2.6.2 Messumformer neu einstellen

Eine der nachfolgenden Methoden zur Neueinstellung des Messumformers verwenden. Jede Methode kann für sich alleine angewandt werden. Alle Möglichkeiten genau prüfen, bevor Sie sich für die für Sie beste Methode entscheiden.

- Neueinstellung durch manuelle Einstellung der Messbereichswerte mittels Handterminal, AMS Device Manager oder Bedieninterface.
- Neueinstellung mit einem Drucknormal und dem Handterminal, AMS Device Manager, Bedieninterface oder den Konfigurationstasten für Nullpunkt und Messspanne.

Manuelle Neueinstellung des Messumformers durch Eingabe von Messbereichswerten

Eingeben der Messbereichswerte mittels Handterminal

Die folgende Funktionstastenfolge vom *HOME*-Bildschirm aus eingeben:

|--|

Eingabe der Messbereichswerte mittels AMS Device Manager

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) auswählen.
- 2. Auf **Manual Setup** (Manuelle Einrichtung) klicken und dann **Analog Output** (Analogausgang) auswählen.
- 3. Den Messanfang und das Messende in das Feld *Range Limits* (Messbereichsgrenzen) eingeben und dann auf **Send** (Senden) klicken.
- 4. Den Warnhinweis aufmerksam durchlesen und auf **Yes** (Ja) klicken, wenn die Änderungen sicher angewandt werden können.

Eingabe der Messbereichswerte mittels Bedieninterface

Abbildung 2-6 auf Seite 16 als Referenz verwenden, um den Messumformer mittels Bedieninterface neu einzustellen. Die Tasten **SCROLL** und **ENTER** verwenden, um die Werte einzugeben.

Abbildung 2-6. Neueinstellung mittels Bedieninterface

Neueinstellung des Messumformers mit einem beaufschlagenden Drucknormal

Die Neueinstellung mit einem beaufschlagenden Drucknormal ist eine Möglichkeit zur Neueinstellung des Messumformers ohne Eingabe von spezifischen 4 und 20 mA (1-5 VDC) Messbereichswerten.

Neueinstellung mit einem beaufschlagenden Drucknormal und einem Handterminal

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:

Geräte-Dashboard-Funktionstastenfolge	2, 2, 2, 2
---------------------------------------	------------

Neueinstellung mit einem beaufschlagenden Drucknormal und dem AMS Device Manager

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) aus dem Menü auswählen.
- 2. Die Registerkarte Analog Output (Analogausgang) auswählen.
- 3. Auf die Schaltfläche **Range by Applying Pressure** (Neueinstellung durch Drucknormal) klicken und den Menüanweisungen folgen, um den Messumformer neu einzustellen.

Neueinstellung mit einem beaufschlagenden Drucknormal und einem Handterminal

Abbildung 2-7 verwenden, um den Messumformer mit einem beaufschlagenden Drucknormal und dem Bedieninterface manuell neu einzustellen.

Neueinstellung mit einem beaufschlagenden Drucknormal und den Einstelltasten für Nullpunkt und Messspanne

Wenn der Messumformer mit den Einstelltasten für Nullpunkt und Messspanne bestellt wurde (Optionscode D4), können diese Tasten zur Neueinstellung des Messumformers mit einem beaufschlagenden Drucknormal verwendet werden. Die Anordnung der Einstelltasten für analogen Nullpunkt und Messspanne ist in Abbildung 2-8 auf Seite 18 dargestellt.

Den Messumformer mittels Nullpunkt- und Messspannentasten neu einstellen:

- 1. Die Schraube lösen, mit der das obere Metallschild des Messumformergehäuses befestigt ist. Das Schild beiseite legen, bis die Nullpunkt- und Messspannentasten zugänglich sind.
- 2. Bestätigen, dass der Messumformer über Nullpunkt- und Messspannentasten verfügt. In diesem Fall befindet sich eine blaue Halterung unter dem Schild.
- 3. Den Messumformer mit dem entsprechenden Druck beaufschlagen.
- 4. Den Messumformer neu einstellen.
 - a. Zum Ändern des Nullpunkts (4 mA/1V) unter Beibehaltung der Messspanne: Die Nullpunkttaste für mind. 2 Sekunden drücken.
 - b. Zum Ändern der Messspanne (20mA/5V) unter Beibehaltung des Nullpunkts: Die Messspannentaste für mind. 2 Sekunden drücken.

Hinweis

Die 4-mA- und 20-mA-Werte müssen unter Beibehaltung der in AnhangA: Technische Daten angegebenen Mindestmessspanne eingestellt werden.

Abbildung 2-8. Einstelltasten für Nullpunkt und Messspanne

A. Nullpunkt- und Messspannentasten

Hinweis

- Wenn die Sicherheitsfunktion des Messumformers aktiviert ist, kann keine Justierung von Nullpunkt und Messspanne vorgenommen werden. Siehe "Sicherheitsfunktion des Messumformers konfigurieren" auf Seite 45 bzgl. Informationen zur Einstellung der Sicherheitsfunktion des Messumformers.
- Die Messspanne bleibt bei der Einstellung des 4-mA/1-V-Werts erhalten. Sie ändert sich jedoch, sobald der 20-mA/5-V-Wert eingestellt wird. Ist der Messanfang auf einen Wert gesetzt, bei dem das Messende die Sensorgrenze überschreitet, wird das Messende automatisch auf die Sensorgrenze gesetzt und die Messspanne entsprechend angepasst.
- Ungeachtet der eingestellten Messbereichswerte misst und meldet der Rosemount 2088 alle erfassten Daten innerhalb der digitalen Grenzen des Sensors. Beispiel: Wenn der 4- und der 20- mA-Punkt (1-5 VDC) auf 0 und 10 inH₂O eingestellt sind und der Messumformer einen Druck von 25 inH₂O erkennt, wird der digitale Ausgang mit 25 inH₂O und der Messbereich mit 250 % ausgegeben.

2.6.3 Dämpfung

Der Befehl "Dämpfung" dient zum Ändern der Ansprechzeit des Messumformers. Höhere Wert können Schwankungen der Ausgangswerte infolge von schnellen Änderungen des Eingangs glätten. Die Dämpfung basierend auf der erforderlichen Ansprechzeit, Signalstabilität sowie weiterer Anforderungen an die Messkreisdynamik einstellen. Der Dämpfungsbefehl verwendet eine Gleitkomma-Konfiguration, die dem Anwender die Eingabe eines beliebigen Dämpfungswerts zwischen 0,0 und 60,0 Sekunden ermöglicht.

Dämpfung mit dem Handterminal einstellen

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:

Geräte-Dashboard-Funktionstastenfolge	2, 2, 1, 1, 5
---------------------------------------	---------------

Den gewünschten Dämpfungswert eingeben und APPLY (Übernehmen) auswählen.

Dämpfung mit AMS Device Manager einstellen

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) auswählen.
- 2. Manual Setup (Manuelle Einrichtung) auswählen.
- 3. Den gewünschten Dämpfungswert in das Feld *Pressure Setup* (Druckeinstellung) eingeben und auf **Send** (Senden) klicken.
- 4. Den Warnhinweis aufmerksam durchlesen und auf **Yes** (Ja) klicken, wenn die Änderungen sicher angewandt werden können.

Dämpfung mittels Bedieninterface eingeben

Abbildung 2-9 als Referenz verwenden, um die Dämpfungswerte mittels Bedieninterface einzugeben.

2.7 Konfigurieren des Digitalanzeigers

Der Befehl "Digitalanzeiger konfigurieren" ermöglicht eine kundenspezifische Einstellung des Digitalanzeigers gemäß den Anwendungsanforderungen. Der Digitalanzeiger alterniert zwischen den ausgewählten Optionen.

- Druckeinheiten
 Sensortemperatur
 - % vom Messbereich 🔹 mA/VDC-Ausgang
- Skalierte Variable

Mithilfe der folgenden Anweisungen kann der Digitalanzeiger auch so konfiguriert werden, dass während des Einschaltvorgangs des Messumformers Konfigurationsdaten angezeigt werden. **Review Parameters at Startup** (Parameter beim Einschaltvorgang prüfen) auswählen, um diese Funktion zu aktivieren oder zu deaktivieren.

Eine Darstellung des Digitalanzeigers mit Bedieninterface ist in Abbildung 1-2 auf Seite 5 zu finden.

Digitalanzeiger mit dem Handterminal konfigurieren

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:

Geräte-Dashboard-Funktionstastenfolge	2, 2, 4
---------------------------------------	---------

Digitalanzeiger mit AMS Device Manager konfigurieren

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) auswählen.
- 2. **Manual Setup** (Manuelle Einrichtung) auswählen und dann auf die Registerkarte **Display** (Anzeige) klicken.
- 3. Die gewünschten Anzeigeoptionen auswählen und auf **Send** (Senden) klicken.

Digitalanzeiger mittels Bedieninterface konfigurieren

Abbildung 2-10 verwenden, um den Digitalanzeiger mittels Bedieninterface zu konfigurieren.

2.8 Detaillierte Einrichtung des Messumformers

2.8.1 Alarm- und Sättigungswerte konfigurieren

Beim normalen Betrieb gibt der Messumformer den Ausgang in Abhängigkeit vom Druck zwischen dem unteren und oberen Sättigungswert aus. Wenn der Druck die Sensorgrenzwerte überschreitet oder wenn der Ausgang den unteren oder oberen Sättigungswert unter- bzw. überschreitet, wird der Ausgang auf den jeweiligen Sättigungswert beschränkt. Der Rosemount 2088 führt automatisch und fortlaufend Selbstdiagnose-Routinen durch. Wenn die Selbstdiagnose eine Störung entdeckt, wird der Ausgang vom Messumformer basierend auf der Position des Alarmschalters auf einen konfigurierten Alarm und Wert gesetzt. Siehe "Messumformeralarm setzen" auf Seite 48.

Tabelle 2-4. Rosemount Alarm- und Sättigungswerte

Füllstand	4-20-mA-Sättigung	4-20-mA-Alarm
Niedrig	3,90 mA (0,97 V)	≤ 3,75 mA (0,95 V)
Hoch	20,80 mA (5,20 V)	≥ 21,75 mA (5,40 V)

Tabelle 2-5. NAMUR Alarm- und Sättigungswerte

Füllstand	4-20-mA-Sättigung	4-20-mA-Alarm
Niedrig	3,80 mA (0,95 V)	≤ 3,60 mA (0,90 V)
Hoch	20,50 mA (5,13 V)	≥22,50 mA (5,63 V)

Tabelle 2-6. Kundenspezifische Alarm- und Sättigungswerte

Füllstand	4-20-mA-Sättigung	4-20-mA-Alarm
Niedrig	3,70 mA bis 3,90 mA	3,60 mA bis 3,80 mA
Hoch	20,10 mA bis 22,90 mA	20,20 mA bis 23,00 mA

Die bei einer Störung gesetzten Alarm- und Sättigungswerte können mit einem Handterminal, AMS Device Manager oder Bedieninterface konfiguriert werden. Für kundenspezifische Werte bestehen die folgenden Einschränkungen:

- Der Wert für Niedrigalarm muss unter dem Wert für niedrige Sättigung liegen.
- Der Wert für Hochalarm muss über dem Wert für hohe Sättigung liegen.
- Die Alarm- und Sättigungswerte müssen um mindestens 0,1 mA voneinander abweichen.

Wenn die Konfigurationsregel verletzt wird, gibt das Konfigurationstool eine Fehlermeldung aus.

Hinweis

Messumformer, die auf die HART Multidrop-Betriebsart eingestellt sind, senden alle Alarm- und Sättigungswerte digital; Sättigungs- und Alarmbedingungen haben keinen Einfluss auf den Analogausgang. Siehe auch "Herstellung der Multidrop Kommunikation" auf Seite 30.

Alarm- und Sättigungswerte mittels Handterminal konfigurieren

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:

Geräte-Dashboard-Funktionstastenfolge	2, 2, 2, 5
---------------------------------------	------------

Alarm- und Sättigungswerte mittels AMS Device Manager konfigurieren

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) aus dem Menü auswählen.
- 2. Auf die Schaltfläche **Configure Alarm and Saturation Levels** (Alarm- und Sättigungswerte konfigurieren) klicken.
- 3. Den Menüanweisungen folgen, um die Alarm- und Sättigungswerte zu konfigurieren.

Alarm- und Sättigungswerte mittels Bedieninterface konfigurieren

Anweisungen zum Konfigurieren der Alarm- und Sättigungswerte sind in Abbildung 2-11 zu finden.

2.8.2 Konfigurieren einer skalierten Variable

Die Konfiguration der skalierten Variable ermöglicht es dem Anwender, eine Beziehung/Umwandlung zwischen den Druckeinheiten und kundenspezifischen Maßeinheiten zu erstellen. Es gibt zwei Einsatzfälle für die skalierte Variable: die Anzeige von kundenspezifischen Messeinheiten auf dem Digitalanzeiger/Bedieninterface des Messumformers und das Setzen des 4-20-mA-Ausgangs des Messumformers durch kundenspezifische Messeinheiten.

Wenn der Anwender wünscht, dass der 4-20 mA (1-5 VDC) Ausgang des Messumformers durch kundenspezifische Messeinheiten gesetzt werden soll, muss die skalierte Variable als Primärvariable neu zugeordnet werden. Siehe "Neuzuordnen von Gerätevariablen" auf Seite 25.

Die Konfiguration der skalierten Variable definiert die folgenden Elemente:

- Einheiten der skalierten Variable Kundenspezifische Maßeinheiten, die angezeigt werden sollen.
- Optionen für skalierte Daten Definiert die Übertragungsfunktion für die Anwendung:
- Position 1 des Druckwerts Unterer bekannter Wertepunkt unter Einbeziehung der Linearverschiebung.
- Wertposition 1 der skalierten Variable Kundenspezifische Einheit, die mit dem unteren bekannten Wertepunkt äquivalent ist.
- Position 2 des Druckwerts Oberer bekannter Wertepunkt.
- Wertposition 2 der skalierten Variable Kundenspezifische Einheit, die mit dem oberen bekannten Wertepunkt äquivalent ist.
- Linearverschiebung Der Wert, der erforderlich ist, um die auf den gewünschten Druckwert wirkenden Druckeinflüsse zu eliminieren.

Konfigurieren einer skalierten Variable mit dem Handterminal

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:

Geräte-Dashboard-Funktionstastenfolge	2, 1, 4, 7
---------------------------------------	------------

- 1. Den Menüanweisungen folgen, um die skalierte Variable zu konfigurieren.
 - a. Linear unter Select Scaled data options (Optionen für skalierte Daten wählen) auswählen.

Skalierte Variable mit AMS Device Manager konfigurieren

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) auswählen.
- 2. Die Registerkarte **Scaled Variable** (Skalierte Variable) auswählen und dann auf die Schaltfläche **Scaled Variable** klicken.
- 3. Den Menüanweisungen folgen, um die skalierte Variable zu konfigurieren.
 - a. Linear unter Select Scaled data options (Optionen für skalierte Daten wählen) auswählen.

Skalierte Variable mittels Bedieninterface konfigurieren

Anweisungen zum Konfigurieren der skalierten Variable mittels Bedieninterface sind in Abbildung 2-12 auf Seite 25 zu finden.

Abbildung 2-12. Skalierte Variable mittels Bedieninterface konfigurieren

2.8.3 Neuzuordnen von Gerätevariablen

Die Neuzuordnungsfunktion ermöglicht die anwenderspezifische Konfiguration der Primär-, Sekundär-, Tertiär- und Quartärvariablen (PV, 2V, 3V und 4V) des Messumformers. Die PV kann mit einem Handterminal, dem AMS Device Manager oder einem Bedieninterface neu zugeordnet werden. Die anderen Variablen (2V, 3V und 4V) können nur mit einem Handterminal oder dem AMS Device Manager neu zugeordnet werden.

Hinweis

Die Variable, die der Primärvariablen zugeordnet ist, setzt den 4-20mA (1-5 VDC) Ausgang. Dieser Wert kann als Druck- oder skalierte Variable ausgewählt werden. Die Variablen 2, 3 und 4 kommen nur zum Einsatz, wenn die HART Burst-Betriebsart verwendet wird.

Neuzuordnung mit einem Handterminal

Die folgende Funktionstastenfolge vom *HOME*-Bildschirm aus eingeben:

Funktionstastenfolge	2, 1, 1, 3
----------------------	------------

Neuzuordnung mit AMS Device Manager

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) auswählen.
- 2. Manual Setup (Manuelle Einrichtung) auswählen und dann auf die Registerkarte HART klicken.
- Die Primär-, Sekundär-, Tertiär- und Quartärvariablen unter Variable Mapping (Variablen-Zuordnung) zuordnen.
- 4. Auf Send (Senden) klicken.
- 5. Den Warnhinweis aufmerksam durchlesen und auf **Yes** (Ja) klicken, wenn die Änderungen sicher angewandt werden können.

Neuzuordnung mittels Bedieninterface

Anweisungen zum Neuzuordnen der Primärvariablen mittels Bedieninterface sind in Abbildung 2-13 zu finden.

2.9 Durchführen von Messumformertests

2.9.1 Alarmwert überprüfen

Wenn die Elektronikplatine des Messumformers, das Sensormodul oder der Digitalanzeiger bzw. das Bedieninterface repariert oder ausgetauscht wurden, den Alarmwert überprüfen, bevor der Messumformer wieder in Betrieb genommen wird. Dies ist hilfreich, um das Verhalten des Leitsystems zu überprüfen, wenn sich ein Messumformer im Alarmzustand befindet und um zu gewährleisten, dass das Leitsystem einen aktivierten Alarm erkennt. Um die Alarmwerte des Messumformers zu überprüfen, einen Messkreistest durchführen und dabei den Messumformerausgang auf den Alarmwert setzen (siehe Tabelle 2-4, 2-5 und 2-6 auf Seite 22 und "Alarmwert überprüfen" auf Seite 27).

Hinweis

Bevor der Messumformer wieder in Betrieb genommen wird, sicherstellen, dass der Sicherheitsschalter in der richtigen Position steht. Siehe "Konfiguration prüfen" auf Seite 12.

2.9.2 Analog-Messkreistest durchführen

Der Befehl Analoger Messkreistest überprüft den Messumformerausgang, die Integrität des Messkreises und die Funktion von Schreibern oder ähnlichen Aufzeichnungsgeräten im Messkreis. Es wird empfohlen, dass bei der Installation, bei der Reparatur oder beim Austausch des Messumformers neben den 4-20 mA (1-5 VDC) Werten auch die Alarmwerte überprüft werden.

Das Hostsystem kann möglicherweise einen aktuellen Messwert für den 4-20 mA (1-5 VDC) HART Ausgang liefern. Falls dies nicht der Fall ist, einen Referenzanzeiger entweder an die Testklemmen des Anschlussklemmenblocks oder parallel an einen Punkt im Messkreis anschließen. Beim 1-5-VDC-Ausgang wird die Spannung direkt über die Vout und (-) Anschlussklemmen gemessen.

Analog-Messkreistest mittels Handterminal

Die folgende Funktionstastenfolge vom *HOME*-Bildschirm aus eingeben:

Geräte-Dashboard-Funktionstastenfolge	3, 5, 1

Analog-Messkreistest mittels AMS Device Manager

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann den Cursor im Dropdown-Menü *Methods* (Methoden) über *Diagnostics and Test* (Diagnose und Test) positionieren. Im Dropdown-Menü *Diagnostics and Test* die Option **Loop Test** (Messkreistest) auswählen.
- 2. Auf Next (Weiter) klicken, nachdem der Messkreis auf Manuell gesetzt wurde.
- 3. Den Menüanweisungen folgen, um einen Messkreistest durchzuführen.
- 4. Auf Finish (Beenden) klicken, um zu bestätigen, dass das Verfahren abgeschlossen ist.

Analog-Messkreistest mittels Bedieninterface

Zur Durchführung eines analogen Messkreistests mittels Bedieninterface können die 4 mA (1 V), 20 mA (5 V) und kundenspezifischen mA-Werte manuell eingestellt werden. Anweisungen zur Durchführung eines Messumformer-Messkreistests mittels Bedieninterface sind unter Abbildung 2-14 zu finden.

2.9.3 Gerätevariablen simulieren

Der Druck, die Sensortemperatur oder die skalierte Variable können für Testzwecke vorübergehend auf einen anwenderspezifischen, festen Wert gesetzt werden. Nach Abschluss des Verfahrens mit der simulierten Variablen gibt die Prozessvariable automatisch wieder den Echtzeit-Messwert aus. Simulierte Gerätevariablen sind nur in der HART Version 7 verfügbar.

Digitales Signal mittels Handterminal simulieren

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:

Geräte-Dashboard-Funktionstastenfolge	3,5
---------------------------------------	-----

Digitales Signal mittels Handterminal AMS Device Manager simulieren

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann Service Tools auswählen.
- 2. Auf **Simulate** (Simulieren) klicken.
- 3. Unter *Device Variables* (Gerätevariablen) einen zu simulierenden digitalen Wert auswählen.
 - a. Druck
 - b. Sensortemperatur
 - c. Skalierte Variable
- 4. Den Menüanweisungen folgen, um den ausgewählten digitalen Wert zu simulieren.

2.10 Burst-Betriebsart konfigurieren

Die Burst-Betriebsart ist mit dem Analogsignal kompatibel. Das HART Protokoll kann gleichzeitig digitale und analoge Daten übertragen; somit kann das Analogsignal ein Gerät im Messkreis steuern, während das digitale Signal vom Leitsystem verarbeitet wird. Die Burst-Betriebsart kann nur für die Übertragung dynamischer Daten verwendet werden (Druck und Temperatur in physikalische Einheiten, Druck in Prozent vom Messbereich, skalierte Variable und/oder Analogausgang) und hat keinen Einfluss auf den Datenfluss anderer angeschlossener Messumformer. Die aktivierte Burst-Betriebsart kann jedoch die Geschwindigkeit der Kommunikation nicht dynamischer Daten an den Host um bis zu 50 % herabsetzen.

Der Zugriff auf andere, nicht dynamische Messumformerdaten ist mit der normalen Abfrage-/Antwortmethode der HART Kommunikation möglich. Eine Abfrage der gewöhnlich in der Burst-Betriebsart verfügbaren Daten über das Handterminal, den AMS Device Manager oder das Leitsystem ist möglich. Zwischen jeder Nachricht, die der Messumformer sendet, gibt es eine kurze Pause, die es dem Handterminal, AMS Device Manager oder Leitsystem ermöglicht, eine Abfrage zu starten.

Auswahl der Optionen für die Burst-Betriebsart in HART 5

Optionen für den Nachrichteninhalt:

- Nur PV
- Prozent des Messbereichs
- PV, 2V, 3V, 4V
- Prozessvariablen
- Gerätestatus

Auswahl der Optionen für die Burst-Betriebsart in HART 7

Optionen für den Nachrichteninhalt:

- Nur PV
- Prozent des Messbereichs
- PV, 2V, 3V, 4V
- Prozessvariablen und Status
- Prozessvariablen
- Gerätestatus

Auswahl eines HART 7 Triggermodus

In der HART 7 Betriebsart können die folgenden Triggermodi ausgewählt werden.

- Kontinuierlich (entspricht der HART5 Burst-Betriebsart)
- Aufwärts
- Abwärts
- Im Fenster
- Bei Änderung

Hinweis

Bezüglich der jeweiligen Anforderungen an die Burst-Betriebsart wenden Sie sich bitte an den Hersteller des Hostsystems.

Burst-Betriebsart mittels Handterminal konfigurieren

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:

|--|

Burst-Betriebsart mittels AMS Device Manager konfigurieren

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) auswählen.
- 2. Die Registerkarte HART auswählen.
- 3. Die Konfigurationsdaten in die Felder "Burst Mode Configuration" (Burst-Betriebsart konfigurieren) eingeben.

2.11 Herstellung der Multidrop Kommunikation

Multidrop bedeutet, dass mehrere Messumformer an die gleiche Datenübertragungsleitung angeschlossen sind. Die Kommunikation zwischen dem Hostsystem und den Messumformern erfolgt digital, d. h. der Analogausgang ist deaktiviert.

Bei einer Multidrop-Installation müssen die erforderliche Aktualisierungsrate für jeden Messumformer, die Kombination verschiedener Messumformermodelle sowie die Länge der Übertragungsleitung berücksichtigt werden. Die Kommunikation kann mit handelsüblichen HART Modems und einem Host-Rechner mit installiertem HART Protokoll erfolgen. Jeder Messumformer hat eine eindeutige Adresse und antwortet auf die Befehle des HART Protokolls. Handterminals und AMS Device Manager können Messumformer für die Multidrop-Installation konfigurieren und testen, genauso wie bei einem Messumformer für eine standardmäßige Einzelinstallation.

Abbildung 2-15 zeigt eine typische Multidrop-Installation (kein Installationsdiagramm).

Abbildung 2-15. Typisches Multidrop Netzwerk (nur 4-20 mA)

B. Spannungsversorgung

Der Rosemount 2088 ist werkseitig auf die Adresse Null (0) eingestellt, die für eine standardmäßige Einzelinstallation mit 4-20-mA-Ausgangssignal benötigt wird. Um die Multidrop Kommunikation zu aktivieren, muss die Messumformeradresse für die HART Version 5 auf eine Zahl zwischen 1 und 15 bzw. für die HART Version 7 auf eine Zahl zwischen 1 und 63 geändert werden. Diese Änderung deaktiviert den 4-20-mA-Analogausgang und setzt ihn auf 4 mA. Ebenso wird das bei einer Störung gesetzte Alarmsignal außer Funktion gesetzt, das über die Schalterposition für Aufwärts/Abwärts eingestellt wird. Störmeldungen von Messumformern in einer Multidrop-Installation werden über HART Nachrichten kommuniziert.

2.11.1 Ändern der Messumformeradresse

Um eine Multidrop-Kommunikation zu aktivieren, muss die Abfrageadresse des Messumformers für die HART Version 5 auf eine Zahl zwischen 1 und 15 bzw. für die HART Version 7 auf eine Zahl zwischen 1 und 63 gesetzt werden, wobei jeder Messumformer eine individuelle Adresse haben muss.

Messumformeradresse mittels Handterminal ändern

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:	HART Version 5	HART Version 7
Geräte-Dashboard-Funktionstastenfolge	2, 2, 5, 2, 1	2, 2, 5, 2, 2

Messumformeradresse mittels AMS Device Manager ändern

1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) aus dem Menü auswählen.

- 2. In der Betriebsart HART Version 5:
 - a. **Manual Setup** (Manuelle Einrichtung) auswählen und dann auf die Registerkarte **HART** klicken.
 - b. Im Feld "Communication Settings" (Kommunikationseinstellungen) die Abfrageadresse in das Feld **Polling Address** (Abfrageadresse) eingeben und dann auf **Send** (Senden) klicken.
- 3. In der Betriebsart HART Version 7:
 - a. **Manual Setup** (Manuelle Einrichtung) auswählen, auf die Registerkarte **HART** und dann auf die Schaltfläche **Change Polling Address** (Abfrageadresse ändern) klicken.
- 4. Den Warnhinweis aufmerksam durchlesen und auf **Yes** (Ja) klicken, wenn die Änderungen sicher angewandt werden können.

2.11.2 Kommunizieren mit einem Messumformer in der Multidrop-Betriebsart

Zum Kommunizieren mit einem Messumformer in der Multidrop Betriebsart muss das Handterminal oder der AMS Device Manager auf Abfrage eingestellt sein.

Kommunizieren mit einem Messumformer in der Multidrop Betriebsart mittels Handterminal

- 1. **Utility** (Dienstprogramm) und dann **Configure HART Application** (HART Anwendung konfigurieren) auswählen.
- 2. Polling Addresses (Abfrageadressen) auswählen.
- 3. **0-63** eingeben.

Kommunizieren mit einem Messumformer in der Multidrop Betriebsart mittels AMS Device Manager

1. Auf das HART Modem Symbol klicken und Scan All Devices (Alle Geräte abfragen) auswählen.

Abschnitt 3 Hardware-Installation

Übersicht	Seite 33
Sicherheitshinweise	Seite 33
Besondere Hinweise	Seite 35
Installationsverfahren	Seite 35
Rosemount Ventilblock 306	Seite 41

3.1 Übersicht

Dieser Abschnitt enthält Informationen zur Installation des Rosemount 2088 mit HART Protokoll. Im Lieferumfang jedes Messumformers ist eine Kurzanleitung (Dok.-Nr. 00825-0105-4108) enthalten. Dieses Dokument beschreibt die empfohlenen Rohranschlüsse und Verdrahtungsverfahren für die Erstinstallation. Maßzeichnungen für jede Variante und Montageart des Rosemount 2088 sind auf Seite 35 zu finden.

Hinweis

Die Verfahren für Demontage und Montage der Messumformer sind in den Abschnitten "Demontageverfahren" auf Seite 74 und "Montageverfahren" auf Seite 75 zu finden.

3.2 Sicherheitshinweise

Die in diesem Abschnitt beschriebenen Anleitungen und Verfahren können besondere Vorsichtsmaßnahmen erforderlich machen, um die Sicherheit des Bedienpersonals zu gewährleisten. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol (\triangle) markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

A WARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen.

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend den lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation des Rosemount 2088 finden Sie im Abschnitt "Produkt-Zulassungen" in dieser Betriebsanleitung.

- Vor Anschluss eines Handterminals in einer explosionsgefährdeten Umgebung sicherstellen, dass die Geräte im Messkreis in Übereinstimmung mit den Vorschriften für eigensichere oder keine Funken erzeugende Feldverdrahtung installiert sind.
- Bei einer Installation mit Ex-Schutz/druckfester Kapselung die Messumformer Gehäusedeckel nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Stromschläge können schwere oder tödliche Verletzungen verursachen.

 Kontakt mit Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

🛦 WARNUNG

Stromschläge können schwere oder tödliche Verletzungen verursachen.

Kontakt mit Leitungsadern und Anschlussklemmen vermeiden.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

- Alle vier Flanschschrauben vor der Druckbeaufschlagung installieren und festziehen.
- Nicht versuchen, die Flanschschrauben zu lösen oder zu entfernen, während der Messumformer in Betrieb ist.

Austausch- oder Ersatzteile, die nicht durch Emerson Process Management zugelassen sind, können die Druckfestigkeit des Messumformers reduzieren, so dass das Gerät ein Gefahrenpotenzial darstellt.

• Ausschließlich Schrauben verwenden, die von Emerson Process Management geliefert oder als Ersatzteile verkauft werden.

Unsachgemäße Montage von Ventilblöcken an Anpassungsflansche kann das Sensormodul beschädigen.

 Für eine sichere Montage von Ventilblöcken an Anpassungsflansche müssen die Schrauben über das Gehäuse des Moduls (d. h. die Schraubenbohrung) hinausragen, dürfen aber das Modulgehäuse nicht berühren.

3.3 Besondere Hinweise

3.3.1 Informationen zur Installation

Die Messgenauigkeit hängt von der korrekten Installation des Messumformers und der Impulsleitungen ab. Den Messumformer nahe zum Prozess montieren und die Impulsleitungen möglichst kurz halten, um so eine hohe Genauigkeit zu erreichen. Ebenso einen leichten Zugang, die Sicherheit für Personen, eine entsprechende Feldkalibrierung und eine geeignete Umgebung für den Messumformer berücksichtigen. Den Messumformer so montieren, dass er möglichst geringen Vibrations- und Stoßeinflüssen sowie Temperaturschwankungen ausgesetzt ist.

Wichtig

Den beiliegenden Verschlussstopfen (siehe Verpackung) mit mindestens fünf Gewindegängen in die unbenutzte Leitungseinführung des Gehäuses montieren, um den Ex-Vorschriften gerecht zu werden.

Informationen zur Werkstoffverträglichkeit sind im Dokument Nr. 00816-0100-3045 unter www.emersonprocess.com/rosemount zu finden.

3.3.2 Informationen zur Messstellenumgebung

Den Messumformer so montieren, dass er möglichst geringen Temperaturschwankungen ausgesetzt ist. Der Betriebstemperaturbereich der Messumformerelektronik beträgt -40 bis 185 °F (-40 bis 85 °C). Betriebstemperaturgrenzen der Messzelle siehe Anhang A: Technische Daten. Den Messumformer so montieren, dass er keinen Vibrations- und Stoßeinflüssen ausgesetzt ist, und äußerlich den Kontakt mit korrosiven Werkstoffen vermeiden.

3.3.3 Mechanische Informationen

Dampfanwendung

Bei Dampfmessung oder Anwendungen mit Prozesstemperaturen, die über den Grenzwerten des Messumformers liegen, die Impulsleitungen nicht über den Messumformer ausblasen. Die Impulsleitungen bei geschlossenen Absperrventilen spülen und die Leitungen vor der Wiederaufnahme der Messung mit Wasser befüllen. Hinweise zur richtigen Einbaulage sind in Abbildung 3-2 auf Seite 39 bis Abbildung 3-4 auf Seite 39 zu finden.

3.4 Installationsverfahren

3.4.1 Messumformer montieren

Der Rosemount Messumformer 2088 wiegt ca. 1,11 kg (2,44 lb.). Aufgrund seiner kompakten Größe und seines geringen Gewichts kann das Gerät in vielen Fällen ohne zusätzlichen Montagewinkel direkt an der Impulsleitung befestigt werden. Ansonsten kann das Gerät mit dem optionalen Montagewinkel direkt an einer Wand oder an einem 50-mm-Rohr befestigt werden (siehe Abbildung 3-1 auf Seite 37).

Maßzeichnungen siehe Anhang A: Technische Daten auf Seite 77.

Hinweis

Die meisten Messumformer werden im Werk in aufrechter Position kalibriert. Wird der Messumformer in einer anderen Position montiert, verschiebt sich der Nullpunkt um den gleichen Betrag wie die darüberliegende Flüssigkeitssäule. Zum Abgleichen des Nullpunkts siehe "Übersicht über den Sensorabgleich" auf Seite 59.

Freiraum Elektronikgehäuse

Den Messumformer so montieren, dass die Seite mit dem Anschlussklemmenblock zugänglich ist. Zum Entfernen des Gehäusedeckels wird ein Freiraum von 19 mm (0,75 in.) benötigt. Einen Verschlussstopfen für die unbenutzte Kabeleinführung verwenden. Ein Freiraum von 77 mm (3 in.) wird benötigt, wenn ein Digitalanzeiger installiert ist.

Abdichtung des Gehäuses

Für NEMA 4X, IP66 und IP68 Dichtband (PTFE) oder Gewindedichtungsmittel auf das Außengewinde der Leitungseinführung auftragen, um die wasserdichte Abdichtung zu gewährleisten.

Bei Installation der/des Elektronikgehäusedeckel(s) stets darauf achten, dass diese vollständig geschlossen sind (Metall/Metall-Kontakt), um eine ordnungsgemäße Abdichtung zu gewährleisten. O-Ringe von Rosemount verwenden.

Montagehalterungen

Rosemount Messumformer 2088 können mit der optionalen Montagehalterung (Optionscode B4) an ein Rohr oder eine Wand montiert werden. Siehe Abbildung 3-1 auf Seite 37 bzgl. Informationen zu Maßen und Montagearten.

Abmessungen in mm (in.)

3.4.2 Impulsleitungen

Montageanforderungen

Die Konfiguration der Impulsleitungen ist von den speziellen Messbedingungen abhängig. Siehe hierzu Abbildung 3-2 auf Seite 39 bis Abbildung 3-4 auf Seite 39 als Beispiele für die folgenden Anordnungen:

Flüssigkeitsmessung

- Die Entnahmestutzen seitlich von der Leitung anbringen, um Ablagerungen auf den Messumformer-Trennmembranen zu vermeiden.
- Den Messumformer neben oder unterhalb den Entnahmestutzen montieren, damit Gase in die Prozessleitung entweichen können.
- Das Ablass-/Entlüftungsventil oben anbringen, damit Gase entweichen können.

Gasmessung

- Die Druckentnahme oberhalb oder seitlich an der Prozessleitung platzieren.
- Den Messumformer neben dem Entnahmestutzen oder darüber montieren, damit Flüssigkeiten in die Prozessleitung ablaufen können.

Dampfmessung

- Die Druckentnahme seitlich an der Prozessleitung platzieren.
- Den Messumformer unterhalb der Entnahmestutzen montieren, um sicherzustellen, dass die Impulsleitungen mit Kondensat gefüllt bleiben.
- Bei Betrieb mit Dampf über 121 °C (250 °F) die Impulsleitung mit Wasser füllen, um so zu verhindern, dass Dampf direkt an den Messumformer kommt und eine korrekte Messung von der Inbetriebnahme an erfolgen kann.

Hinweis

Bei Dampf oder anderen Anwendungen mit ebenso hohen Temperaturen ist es wichtig, dass die Temperaturen am Prozessanschluss nicht die Temperaturgrenzen des Messumformers überschreiten.

Abbildung 3-2. Installationsbeispiel für Flüssigkeitsanwendung

Abbildung 3-3. Installationsbeispiel für Gasanwendung

Hinweise zur Handhabung

Um genaue Messungen zu erreichen, müssen die Leitungen zwischen der Prozessleitung und dem Messumformer den Druck exakt übertragen. Es gibt fünf mögliche Störungsursachen: Druckübertragung, Leckagen, Reibungsverluste (speziell beim Ausblasen), Gaseinschlüsse bei Flüssigkeiten, Flüssigkeit in Gasen und Dichteabweichungen zwischen den beiden Impulsleitungen.

Die beste Anordnung des Messumformers zur Prozessleitung ist abhängig vom Prozess selbst. Nachfolgende Richtlinien verwenden, um Messumformer und Impulsleitungen richtig anzuordnen:

- Die Impulsleitungen so kurz wie möglich halten.
- Bei Flüssigkeitsanwendungen die Impulsleitungen vom Messumformer aus mit einer Steigung von mindestens 8 cm pro m (1 in./ft.) nach oben zum Prozessanschluss verlegen.
- Bei Gasanwendungen die Impulsleitungen vom Messumformer aus mit einer Steigung von mindestens 8 cm pro m (1 in./ft.) nach unten zum Prozessanschluss verlegen.
- Hoch liegende Punkte bei Flüssigkeitsleitungen und niedrig liegende bei Gasleitungen vermeiden.
- Impulsleitungen verwenden, die groß genug sind, um ein Verstopfen sowie ein Einfrieren zu verhindern.
- Gas vollständig aus den mit Flüssigkeit gefüllten Impulsleitungen entlüften.
- Zum Ausblasen die Ausblasanschlüsse möglichst nahe an die Prozessentnahmestutzen setzen und mittels gleich langen und Rohren mit gleichem Rohrdurchmesser ausblasen. Das Ausblasen über den Messumformer vermeiden.
- Korrosive oder heiße Prozessmedien (über 121 °C [250 °F]) nicht in direkten Kontakt mit dem Sensormodul und den Flanschen bringen.
- Ablagerungen in den Impulsleitungen verhindern.
- Betriebsbedingungen vermeiden, die das Einfrieren der Prozessflüssigkeit bis hin zu den Prozessflanschen ermöglichen.

3.4.3 Prozessanschlüsse

3.4.4 Prozessanschluss mit Inline-Flansch

Einbaulage des Inline-Messumformers für Überdruck

▲ VORSICHT

Die Störung oder Blockierung des Referenzanschlusses für den Atmosphärendruck führt zur Ausgabe fehlerhafter Druckwerte durch den Messumformer.

Der Niederdruckanschluss des Inline-Messumformers für Überdruck befindet sich am Stutzen des Messumformers hinten am Gehäuse. Die Entlüftungsöffnungen sind 360 Grad um den Messumformer zwischen Gehäuse und Sensor angeordnet (siehe Abbildung 3-5).

Die Entlüftungsöffnungen bei der Montage des Messumformers stets frei von z. B. Lack, Staub, Schmiermittel halten, so dass der Prozess sich entlüften kann.

A. Niederdruckanschluss (Atmosphärendruckreferenz)

A WARNUNG

Das Sensormodul nicht direkt mit einem Drehmoment beaufschlagen. Ein Verdrehen des Sensormoduls gegenüber dem Prozessanschluss kann die Elektronik zerstören. Um eine Zerstörung zu vermeiden, nur den Sechskant-Prozessanschluss mit einem Drehmoment beaufschlagen.

A. Sensormodul **B. Prozessanschluss**

Rosemount Ventilblock 306 3.5

Um die Funktionen von Absperr- und Entlüftungsventil bis 690 bar (10000 psi) zu realisieren, wird der integrierte Ventilblock 306 für die Rosemount Inline-Messumformer 2088 verwendet.

3.5.1

Installation des integrierten Ventilblocks Rosemount 306

A Den Ventilblock 306 und den Rosemount 2088 Inline-Messumformer unter Verwendung eines Gewinde-Dichtmittels montieren.

Abschnitt 4 Elektrische Installation

Übersicht	Seite 43
Sicherheitshinweise	Seite 43
Digitalanzeiger/Bedieninterface	Seite 44
Sicherheitsfunktion des Messumformers konfigurieren	Seite 45
Messumformeralarm setzen	Seite 48
Elektrische Anforderungen	Seite 48
Erdung des Anschlussklemmenblocks mit integriertem Überspannungsschutz	Seite 53

4.1 Übersicht

Dieser Abschnitt enthält Informationen zur Installation des Rosemount 2088. Im Lieferumfang jedes Messumformers ist eine Kurzanleitung enthalten, die den Anschluss an die Rohrleitung, Verdrahtungsverfahren und grundlegende Konfigurationen für die Erstinstallation beschreibt.

Hinweis

Die Verfahren für Demontage und Montage der Messumformer sind in den Abschnitten "Demontageverfahren" auf Seite 74 und "Montageverfahren" auf Seite 75 zu finden.

4.2 Sicherheitshinweise

Zur Sicherheit für den Bediener können Verfahren und Anweisungen in diesem Kapitel besondere Vorsorge erfordern. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol (() markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

🛦 WARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen.

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend den lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation des Rosemount 2088 finden Sie im Abschnitt "Produkt-Zulassungen" in dieser Betriebsanleitung.

Bei einer Installation mit Ex-Schutz/druckfester Kapselung die Messumformer-Gehäusedeckel nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

• Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Stromschläge können schwere oder tödliche Verletzungen verursachen.

• Kontakt mit Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

4.3 Digitalanzeiger/Bedieninterface

Bei Messumformern, die mit Digitalanzeiger (Option M5) oder Bedieninterface (Option M4) bestellt wurden, ist die Anzeige bereits installiert. Für die Installation der Anzeiger an einen vorhandenen Rosemount 2088 Messumformer ist ein kleiner Schraubendreher erforderlich. Den Steckverbinder der jeweiligen Anzeige vorsichtig mit dem Steckverbinder der Elektronikplatine ausrichten. Wenn die Steckverbinder nicht aufeinander ausgerichtet werden können, sind Anzeige und Elektronikplatine nicht kompatibel.

Abbildung 4-1. Anbringen des Bedieninterface

A. Digitalanzeiger/Bedieninterface B. Größerer Gehäusedeckel

4.3.1 Digitalanzeiger/Bedieninterface drehen

Â

1.

Den Messkreis auf Handbetrieb einstellen und die Spannungsversorgung des Messumformers trennen.

- 2. Den Gehäusedeckel des Messumformers entfernen.
- 3. Die Schrauben vom Digitalanzeiger/Bedieninterface entfernen und den Digitalanzeiger bzw. das Bedieninterface in die gewünschte Ausrichtung drehen.
 - a. Den 10-poligen Steckverbinder in die Displayplatine für die entsprechende Ausrichtung stecken. Die Stifte vor dem Einsetzen in die Ausgangsplatine vorsichtig ausrichten.
- 4. Die Schrauben wieder einsetzen.
- 5. Den Gehäusedeckel des Messumformers wieder anbringen. Der Gehäusedeckel muss vollständig eingerastet sein, damit die Anforderungen für Explosionsschutz erfüllt sind.
- 6. Die Spannungsversorgung des Messumformers wieder herstellen und den Messkreis wieder auf Automatikbetrieb einstellen.

4.4 Sicherheitsfunktion des Messumformers konfigurieren

Der Rosemount 2088 Messumformer verfügt über vier Methoden zum Einstellen der Sicherheitsfunktion:

- Sicherheitsschalter
- HART Sperre
- Sperre der Einstelltasten
- Kennwort f
 ür Bedieninterface

Abbildung 4-2. 4-20-mA-Elektronikplatine

Hinweis

Die 1-5-VDC Alarm- und Sicherheitsschalter befinden sich an der gleichen Stelle wie bei den 4-20-mA-Ausgangsplatinen.

4.4.1 Sicherheitsschalter einstellen

Der Sicherheitsschalter wird verwendet, um Änderungen an den Konfigurationsdaten des Messumformers zu verhindern. Wenn sich der Sicherheitsschalter in der verriegelten Position () befindet, werden keine mittels Handterminal, Bedieninterface oder lokalen Konfigurationstasten gesendeten Konfigurationsanforderungen vom Messumformer akzeptiert und die Konfigurationsdaten des Messumformers bleiben unverändert. Die Anordnung des Sicherheitsschalters ist in Abbildung 4-2 dargestellt. Die nachfolgenden Schritte verwenden, um den Sicherheitsschalter zu aktivieren.

- 1. Den Messkreis auf Manuell setzen und die Spannungsversorgung trennen.
 - 2. Den Gehäusedeckel des Messumformers entfernen.
 - 3. Den Schalter mit einem kleinen Schraubendreher in die verriegelte Position (🔒) schieben.
 - 4. Den Gehäusedeckel des Messumformers wieder anbringen. Der Gehäusedeckel muss vollständig eingerastet sein, damit die Anforderungen für Explosionsschutz erfüllt sind.

4.4.2 HART Sperre

Die HART Sperre verhindert Änderungen an den Konfigurationsdaten des Messumformers durch jegliche Quellen. Dadurch werden keine mittels Handterminal, Bedieninterface oder lokalen Einstelltasten angeforderten Änderungen vom Messumformer akzeptiert. Die HART Sperre kann nur durch HART Kommunikation gesetzt werden und ist nur in der Betriebsart HART Version 7 verfügbar. Die HART Sperre kann mit dem Handterminal oder AMS Device Manager aktiviert oder deaktiviert werden.

HART Sperre mit dem Handterminal konfigurieren

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:

HART Sperre mit dem AMS Device Manager konfigurieren

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) aus dem Menü auswählen.
- 2. Unter *Manual Setup* (Manuelle Einrichtung) die Registerkarte **Security** (Sicherheit) auswählen.
- 3. Unter *HART Lock* (*Software*) (HART Sperre) auf die Schaltfläche **Lock/Unlock** (Verriegeln/Entriegeln) klicken und den Menüanweisungen folgen.

4.4.3 Sperre der Einstelltasten

Die Sperre der Einstelltasten deaktiviert alle Funktionen der lokalen Einstelltasten. Dadurch werden keine mittels Bedieninterface oder lokalen Konfigurationstasten angeforderten Änderungen an der Konfiguration des Messumformers akzeptiert. Die externen lokalen Tasten können nur per HART Kommunikation gesperrt werden.

Sperre der Einstelltasten mit dem Handterminal konfigurieren

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:

Funktionstastenfolge des Geräte-Dashboards	2, 2, 6, 3
--	------------

Sperre der Einstelltasten mit AMS Device Manager konfigurieren

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) aus dem Menü auswählen.
- 2. Unter *Manual Setup* (Manuelle Einrichtung) die Registerkarte **Security** (Sicherheit) auswählen.
- 3. Im Dropdown-Menü *Configuration Buttons* (Einstelltasten) die Option **Disabled** (Deaktiviert) auswählen, um die externen lokalen Tasten zu sperren.
- 4. Auf **Send** (Senden) klicken.
- 5. Die Wartungsanforderung bestätigen und auf **Yes** (Ja) klicken.

4.4.4 Kennwort für Bedieninterface

Für das Bedieninterface kann ein Kennwort eingegeben und aktiviert werden, um die Prüfung und Modifizierung des Messumformers mittels Bedieninterface zu verhindern. Der Kennwortschutz verhindert nicht die Konfiguration mittels HART Kommunikation oder externen Einstelltasten (analoger Nullpunkt und Messspanne, digitaler Nullpunktabgleich). Das Kennwort für das Bedieninterface ist ein 4-stelliger Code, der vom Anwender eingestellt werden muss. Falls das Kennwort verloren geht oder vergessen wird, kann das Master-Kennwort "9307" verwendet werden.

Das Kennwort für das Bedieninterface kann durch HART Kommunikation mittels Handterminal, AMS Device Manager oder Bedieninterface konfiguriert und aktiviert/deaktiviert werden.

Kennwort für Bedieninterface mittels Handterminal konfigurieren

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:

Funktionstastenfolge des Geräte-Dashboards	2, 2, 6, 5, 2
--	---------------

Kennwort für Bedieninterface mittels AMS Device Manager konfigurieren

- 1. Mit der rechten Maustaste auf den Messumformer klicken und dann **Configure** (Konfigurieren) aus dem Menü auswählen.
- 2. Unter *Manual Setup* (Manuelle Einrichtung) die Registerkarte **Security** (Sicherheit) auswählen.
- 3. In *Local Operator Interface* (Bedieninterface) auf die Schaltfläche **Configure Password** (Kennwort konfigurieren) klicken und den Menüanweisungen folgen.

Kennwort für Bedieninterface mittels Bedieninterface konfigurieren

Abbildung 4-3. Kennwort für Bedieninterface

4.5 Messumformeralarm setzen

Auf der Elektronikplatine befindet sich ein Alarmschalter. Die Anordnung des Schalters ist in Abbildung 4-2 auf Seite 43 dargestellt. Die nachfolgenden Schritte verwenden, um die Position des Alarmschalters zu ändern.

- 1. Den Messkreis auf Manuell setzen und die Spannungsversorgung trennen.
- 2. Den Gehäusedeckel des Messumformers entfernen.
- 3. Den Schalter mit einem kleinen Schraubendreher in die gewünschte Position schieben.
- 4. Den Gehäusedeckel des Messumformers wieder anbringen. Der Gehäusedeckel muss vollständig eingerastet sein, damit die Anforderungen für Explosionsschutz erfüllt sind.

4.6 Elektrische Anforderungen

Hinweis

Sicherstellen, dass der elektrische Anschluss gemäß nationaler und lokaler Vorschriften für die Elektroinstallation vorgenommen wird.

▲ VORSICHT

Die Signalleitungen nicht zusammen mit Stromleitungen in einem offenen Kabelkanal oder einem Schutzrohr und nicht in der Nähe von Starkstromgeräten verlegen.

4.6.1 Montage des Kabelschutzrohrs

▲ VORSICHT

Alle Kabeldurchführungen müssen abgedichtet werden, da der Messumformer durch Ansammlung übermäßiger Feuchtigkeit

beschädigt werden kann. Den Messumformer so montieren, dass das Elektronikgehäuse nach unten weist,

um den Flüssigkeitsabfluss zu gewährleisten. Um Feuchtigkeitsansammlungen im Gehäuse zu vermeiden,

die Verdrahtung mit einer Abtropfschlaufe installieren und sicherstellen, dass der Boden der Abtropfschlaufe niedriger ist als die

Kabeldurchführungen des Messumformergehäuses.

Empfohlene Kabeldurchführungen sind in Abbildung 4-4 dargestellt.

Abbildung 4-4. Installationsschemata des Kabelschutzrohrs

A. Mögliche Positionen des Kabelschutzrohrs B. Dichtmasse

4.6.2 Spannungsversorgung

4-20 mA HART (Optionscode S)

Der Messumformer wird mit 10,5 bis 42,4 VDC an den Anschlussklemmen betrieben. Die DC-Spannungsversorgung sollte eine Spannung mit weniger als 2 % Restwelligkeit liefern. Für Messkreise mit einer Bürde von 250 Ω ist eine Spannung von mindestens 16,6 V erforderlich.

Hinweis

Für die Kommunikation mit dem Handterminal ist eine Bürde von mind. 250 Ω erforderlich. Wird eine Spannungsversorgung für mehr als einen Rosemount 2088 verwendet und sind die Messumformer gemeinsam verdrahtet, darf die Impedanz bei 1200 Hz nicht größer als 20 Ω sein.

Abbildung 4-5. Bürdengrenzen

```
max. Messkreisbürde = 43,5 * (Versorgungsspannung – 10,5)
```


Das Handterminal benötigt zur Kommunikation eine Messkreisbürde von mind. 250 \varOmega .

Die Gesamtbürde des Messkreises errechnet sich aus der Summe der Widerstandswerte der Signalleitungen sowie des Lastwiderstands des Reglers, der Anzeige, der eigensicheren Barrieren und sonstiger angeschlossener Geräte. Bei Verwendung eigensicherer Sicherheitsbarrieren muss der Widerstand und Spannungsabfall der Barrieren mit einbezogen werden.

1-5 VDC Niedrigspannung HART (Ausgangscode N)

Niedrigspannung-Messumformer arbeiten mit 9-28 VDC. Die Welligkeit der Gleichspannungsversorgung muss unter 2 % liegen. Die V_{out} Bürde sollte 100 k Ω oder mehr betragen.

4.6.3 Verdrahtung des Messumformers

▲ VORSICHT

Die spannungsführenden Signalleitungen nicht an die Testklemmen anschließen. Der Testschaltkreis kann durch falsche Verdrahtung beschädigt werden.

Hinweis

Eine gute Kommunikation wird durch paarweise verdrillte und abgeschirmte Leitungen sowie einen Leitungsquerschnitt von 0,2 mm² (24 AWG) oder größer sichergestellt. Eine Leitungslänge von 1500 m (5000 ft.) sollte nicht überschritten werden. Für 1-5 V werden maximal 150 m (500 ft.) empfohlen. Nichtpaarige dreiadrige oder zwei paarweise verdrillte Leitungen werden empfohlen.

A. Gleichspannungsversorgung B. R_I ≥ 250 (nur für die HART Kommunikation erforderlich)

Abbildung 4-7. Verdrahtung des Messumformers (1-5 VDC Niedrigspannung)

A. Gleichspannungsversorgung B. Voltmeter Bei der Verdrahtung wie folgt vorgehen:

- 1. Den Gehäusedeckel an der Seite mit den Anschlussklemmen entfernen. In explosionsgefährdeten Bereichen dürfen Messumformer nur im spannungslosen Zustand geöffnet werden. Die Signalverdrahtung liefert die Spannung für den Messumformer.
- A 2. Für den 4-20 mA HART Ausgang die Plusader an die mit (pwr/comm+) und die Minusader an die mit (pwr/comm −) gekennzeichnete Klemme anschließen. Keine unter Spannung stehenden Anschlussdrähte an die Testklemmen anschließen. Dies kann die interne Testdiode zerstören.
 - a. Für den 1-5 VDC HART Ausgang die Plusader an die mit (PWR +) und die Minusader an die mit (PWR -) gekennzeichnete Klemme anschließen. Keine unter Spannung stehenden Anschlussdrähte an die Testklemmen anschließen. Dies kann die interne Testdiode zerstören.
 - 3. Um Feuchtigkeitsansammlungen im Anschlussgehäuse zu vermeiden, die nicht benötigten Kabeldurchführungen verschließen und abdichten.

4.6.4 Erdung des Messumformers

Erdung des Signalkabelschirms

Die Erdung des Signalkabelschirms ist in Abbildung 4-8 auf Seite 52 zusammengefasst. Der Signalkabelschirm und die nicht verwendete Beilitze müssen kurz abisoliert und vom Gehäuse des Messumformers isoliert werden. Anweisungen zur Erdung des Messumformergehäuses sind unter "Erdung des Messumformergehäuses" auf Seite 52 zu finden. Die nachfolgenden Schritte verwenden, um den Signalkabelschirm ordnungsgemäß zu erden.

- 1. Den Gehäusedeckel auf der Seite mit den Feldanschlussklemmen entfernen.
- 2. Das Signalkabelpaar gemäß Abbildung 4-6 an den Feldanschlussklemmen anschließen.
- 3. Der Kabelschirm und die Beilitze müssen an den Feldanschlussklemmen kurz abisoliert und vom Gehäuse des Messumformers isoliert werden.
- 4. Den Gehäusedeckel auf der Seite mit den Feldanschlussklemmen wieder anbringen. Der Gehäusedeckel muss vollständig eingerastet sein, damit die Anforderungen für Explosionsschutz erfüllt sind.
- 5. Die Beilitze sollte an Abschlüssen außerhalb des Messumformergehäuses durchgehend elektrisch verbunden sein.
 - a. Jegliche freiliegende Beilitze muss wie in Abbildung 4-8 (B) dargestellt bis zum Abschlusspunkt isoliert sein.
- 6. Die Beilitze des Signalkabels ordnungsgemäß an oder in der Nähe der Spannungsversorgung an einem Erdungsanschluss abschließen.

Abbildung 4-8. Verdrahtung von Leitungspaar und Erdung

B. Freiliegende Beilitze isolieren

C. Beilitze des Signalkabels an Erdungsanschluss abschließen

Erdung des Messumformergehäuses

Das Messumformergehäuse stets gemäß nationalen und lokalen Vorschriften für die Elektroinstallation erden. Die beste Erdung des Messumformergehäuses wird durch einen direkten Erdungsanschluss mit minimaler Impedanz erreicht. Methoden zur Erdung des Messumformergehäuses:

- Interner Erdungsanschluss: Der innenliegende Erdungsanschluss befindet sich auf der Seite mit der Kennzeichnung FIELD TERMINALS im Inneren des Elektronikgehäuses. Die Schraube ist mit dem Erdungssymbol () gekennzeichnet und ist Standard bei allen Rosemount Messumformern 2088. Siehe Abbildung 4-9 auf Seite 52.
- Externer Erdungsanschluss: Der externe Erdungsanschluss befindet sich an der Außenseite des Messumformers. Siehe Abbildung auf Seite 52. Dieser Anschluss ist nur mit Option T1 verfügbar.

- A. Anordnung der internen Erdungsschraube
- B. Anordnung der externen Erdungsschraube
- C. Positiv
- D. Negativ
- E. Test

Hinweis

Die Erdung des Messumformergehäuses am Leitungseinführungsgewinde gewährleistet ggf. keinen ausreichenden Schutz.

Erdung des Anschlussklemmenblocks mit integriertem Überspannungsschutz

Der Messumformer widersteht gewöhnlich elektrischen Überspannungen, die dem Energieniveau von statischen Entladungen bzw. induktiven Schaltüberspannungen entsprechen. Energiereiche Überspannungen, die z. B. von Blitzschlägen in der Verdrahtung induziert werden, können jedoch den Messumformer beschädigen.

Der Anschlussklemmenblock mit integriertem Überspannungsschutz kann als installierte Option (Optionscode T1) oder als ein an installierte Rosemount Messumformer 2088 nachrüstbares Ersatzteil bestellt werden. Das in Abbildung 4-10 auf Seite 53 dargestellte Blitzsymbol identifiziert den Anschlussklemmenblock mit integriertem Überspannungsschutz.

Abbildung 4-10. Anschlussklemmenblock mit integriertem Überspannungsschutz

A. Anordnung des Blitzsymbols

Hinweis

Der Anschlussklemmenblock mit integriertem Überspannungsschutz bietet nur dann Überspannungsschutz, wenn das Messumformergehäuse ordnungsgemäß geerdet ist. Die genannten Richtlinien zur Erdung des Messumformergehäuses befolgen. Siehe Abbildung 4-9 auf Seite 52.

Abschnitt 5 Betrieb und Wartung

Übersicht	Seite 55
Sicherheitshinweise	Seite 55
Übersicht über die Kalibrierung	Seite 56
Drucksignal abgleichen	Seite 59
Analogausgang abgleichen	Seite 63
HART Version umschalten	Seite 67

5.1 Übersicht

Dieser Abschnitt enthält Informationen über die Kalibrierung von Rosemount Druckmessumformern 2088.

Die Anweisungen für das Handterminal, den AMS Device Manager und das Bedieninterface dienen der Durchführung von Konfigurationsfunktionen.

5.2 Sicherheitshinweise

Zur Sicherheit für den Bediener können Verfahren und Anweisungen in diesem Kapitel besondere Vorsorge erfordern. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol (() markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

5.2.1 Warnungen

A WARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen.

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend den lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation des Rosemount 2088 finden Sie im Abschnitt "Produkt-Zulassungen" in dieser Betriebsanleitung.

- Vor Anschluss eines Handterminals in einer explosionsgefährdeten Umgebung sicherstellen, dass die Geräte im Messkreis in Übereinstimmung mit den Vorschriften für eigensichere oder keine Funken erzeugende Feldverdrahtung installiert sind.
- Bei einer Installation mit Ex-Schutz/druckfester Kapselung die Messumformer-Gehäusedeckel nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Stromschläge können schwere oder tödliche Verletzungen verursachen.

 Kontakt mit Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

5.3 Empfohlene Kalibriervorgänge

▲ VORSICHT

Messumformer für Absolutdruck (Rosemount 2088A) werden werkseitig kalibriert. Abgleichfunktionen justieren die Lage der Kennlinie der Werkscharakterisierung. Wenn ein Abgleich nicht korrekt oder mit ungenauen Betriebsmitteln ausgeführt wird, kann die Messumformerleistung verschlechtert werden.

Tabelle 5-1. Grund- und volle Kalibriervorgänge

Einstellung nach der Feldmontage		Kalibrierung vor der Feldmontage			
1.		Nullpunkt- bzw. unteren Sensorabgleich durchführen: Zur Kompensation der Finflüsse der	1.		Optionalen Abgleich des 4-20mA (1-5 VDC) Ausgangs durchführen
		Einbaulage	2.		Sensorabgleich durchführen
2.	a.	Funktionsweise der integrierten Ventilblöcke in Abschnitt 3.5 beachten, um die Ventile ordnungsgemäß zu entleeren/zu entlüften Basis-Konfigurationsparameter		a.	Nullpunkt- bzw. unteren SensorabgleichSeite 70 unter Verwendung der Korrektur bei statischem Druck durchführen. Siehe Abschnitt 3.5 bzgl. der Funktionsweise der Ablass-/Entlüftungsventile der integrierten Ventilblöcke.
		setzen/prüfen		b.	Optionaler Abgleich des Messbereichs-Endwerts, Setzt die
	a.	Ausgangseinneiten			Messspanne des Messumformers
	b.	Messbereichswerte			und erfordert präzise Kalibriergeräte
	с.	Art des Ausgangs		c.	Basis-Konfigurationsparameter
	d.	Dämpfungswert			setzen/prüfen

5.4 Übersicht über die Kalibrierung

Der Rosemount Druckmessumformer 2088 ist ein genaues Instrument, das vollständig im Werk kalibriert wurde. Kalibrierungen nach der Feldmontage ermöglichen dem Anwender die Einhaltung von Anlagenanforderungen oder Industrienormen. Die vollständige Kalibrierung des Rosemount 2088 kann in zwei Schritte unterteilt werden: Kalibrierung des Sensors und Kalibrierung des Analogausgangs.

Die Kalibrierung des Sensors ermöglicht dem Anwender die Anpassung des (digitalen) Druckwerts, der vom Messumformer ausgegeben wird, entsprechend eines Drucknormals. Dabei kann die Druckabweichung kompensiert werden, um den Einfluss der Einbaubedingungen oder des statischen Drucks zu korrigieren. Die Durchführung dieser Korrektur wird empfohlen. Die Kalibrierung des Druckbereichs (Korrektur von Drucksignalbereich oder -verstärkung) erfordert genaue Drucknormale (Quellen) für die vollständige Kalibrierung.

Wie bei der Kalibrierung des Sensors kann auch der Analogausgang kalibriert werden, um den Anforderungen eines Messsystems gerecht zu werden. Mithilfe eines Abgleichs des Analogausgangs (Abgleich des 4-20-mA/1-5-V-Ausgangs) können die 4 mA (1 V) und 20 mA (5 V) Punkte des Messkreises kalibriert werden. Die Kalibrierung des Sensors und des Analogausgangs werden zusammen verwendet, um das Messsystem des Messumformers an die Anlagenparameter anzupassen.

Sensor kalibrieren

- Sensorabgleich (Seite 60)
- Nullpunktabgleich (Seite 61)

4-20 mA Ausgang kalibrieren

- Abgleich des 4-20-mA/1-5-V-Ausgangs (Seite 64)
- Skalierter Abgleich des 4-20-mA/1-5-V-Ausgangs (Seite 65)

5.4.1 Bestimmung der erforderlichen Abgleichvorgänge des Sensors

Der Messumformer kann vor der Feldmontage auf den gewünschten Betriebsbereich kalibriert werden. Nach dem einfachen Anschluss an eine Druckquelle kann die vollständige Kalibrierung der gewünschten Betriebspunkte durchgeführt werden. Der Betrieb des Messumformers über den gesamten gewünschten Druckbereich ermöglicht die Überprüfung des Analogausgangs. In Abschnitt Drucksignal abgleichen auf Seite 59 wird beschrieben, wie die Kalibrierung durch die Abgleichvorgänge geändert wird. Wenn ein Abgleich nicht korrekt oder mit ungenauen Betriebsmitteln ausgeführt wird, können sich die Leistungsmerkmale des Messumformers verschlechtern. Mit dem Befehl "Zurücksetzen auf Werksabgleich" entsprechend den Anweisungen unter Zurücksetzen auf Werksabgleich – Sensorabgleich auf Seite 62 können die werkseitigen Einstellungen des Messumformers wiederhergestellt werden.

Bestimmen der erforderlichen Abgleichsvorgänge des Sensors:

- 1. Mit Druck beaufschlagen.
- 2. Den digitalen Druckwert prüfen. Wenn der digitale Druck nicht dem angelegten Druck entspricht, einen digitalen Abgleich durchführen. Siehe Sensorabgleich durchführen auf Seite 60.
- 3. Den ausgegebenen Analogausgang mit dem Live-Analogausgang vergleichen. Wenn die Werte nicht übereinstimmen, einen analogen Ausgangsabgleich durchführen. Siehe Digital/Analog-Abgleich (Abgleich des 4-20 mA/1-5-V-Ausgangs) durchführen auf Seite 64.

Abgleich mit den Konfigurationstasten

Die lokalen Konfigurationstasten sind die externen Tasten, die unter dem oberen Metallschild des Messumformers zu finden sind. Die lokalen Konfigurationstasten können in zwei Ausführungen bestellt und zur Durchführung der Abgleichvorgänge verwendet werden: digitaler Nullpunktabgleich und Bedieninterface. Um Zugriff auf die Tasten zu erhalten, die Schraube lösen und das obere Schild beiseite drehen, bis die Tasten sichtbar sind.

- Bedieninterface (M4): Ermöglicht die Durchführung des digitalen Sensorabgleichs und des Abgleichs des 4-20-mA-Ausgangs (Abgleich des Analogausgangs). Den weiter unten aufgeführten Verfahren für den Abgleich mittels Handterminal oder AMS Device Manager folgen.
- Digitaler Nullpunktabgleich (Option DZ): Ermöglicht den Nullpunktabgleich des Sensors. Die Anweisungen für den Abgleich sind unter Kalibrierintervall festlegen auf Seite 58 zu finden.

Alle Konfigurationsänderungen sollten auf einem Digitalanzeiger oder durch Messung des Messkreisausgangs überwacht werden. Abbildung 5-1 zeigt die Unterschiede zwischen den beiden Tastensets.

Abbildung 5-1. Optionen für die lokalen Konfigurationstasten

5.4.2 Kalibrierintervall festlegen

Das Kalibrierintervall kann je nach Applikation, erforderlicher Genauigkeit und Prozessbedingungen stark voneinander abweichen. Nachfolgendes Verfahren kann als Richtlinie verwendet werden, um das Kalibrierintervall abzuschätzen.

- 1. Festlegen der erforderlichen Genauigkeit für die Applikation.
- 2. Feststellen der Betriebsbedingungen.
- 3. Berechnung des wahrscheinlichen Gesamtfehlers (TPE = Total Probable Error).
- 4. Berechnung der Stabilität pro Monat.
- 5. Berechnung des Kalibrierintervalls.

Beispielberechnung für den Rosemount 2088

Schritt 1: Festlegen der erforderlichen Genauigkeit für die Applikation.

Erforderliche Genauigkeit:

0,50 % der Messspanne

Schritt 2: Feststellen der Betriebsbedingungen.

Messumformer:	Rosemount 2088G, Messbereich 1 [obere Messbereichsgrenze = 2,1 bar (30 psi)]
Kalibrierte Messspanne:	2,1 bar (30 psi)
Änderung der Umgebungstemperatur:	±28 °C (50 °F)

Schritt 3: Berechnung des TPE.

TPE = $\sqrt{(\text{ReferenceAccuracy})^2 + (\text{TemperatureEffect})^2 + (\text{StaticPressureEffect})^2} = 0,309\%$ der Messspanne Wobei:

Referenzgenauigkeit =	±0,075 % der Messspanne
Einfluss der Umgebungstemperatur =	\pm (0,15 % obere Messbereichsgrenze + 0,15 % der Messspanne) pro 50 °F = \pm 0,3 % der Messspanne

Schritt 4: Berechnung der Stabilität pro Monat.

Stability =
$$\pm \left[\frac{(0.100 \times \text{URL})}{\text{Span}}\right]$$
% of span for 3 years = ± 0.0028 % of URL for 1 month

Schritt 5: Berechnung des Kalibrierintervalls.

Cal. Freq. = $\frac{(\text{Req. Performance} - \text{TPE})}{\text{Stability per Month}} = \frac{(0.5\% - 0.309\%)}{0.0028\%} = 68 \text{ months}$

5.5 Drucksignal abgleichen5.5.1 Übersicht über den Sensorabgleich

Ein Sensorabgleich korrigiert die Druckabweichung und den Drucksignalbereich entsprechend eines Drucknormals. Der obere Sensorabgleich korrigiert den Drucksignalbereich und der untere Sensorabgleich (Nullpunktabgleich) korrigiert den Druck-Offset. Die vollständige Kalibrierung erfordert ein genaues Drucknormal. Eine Nullpunktabgleich kann bei entlüftetem Prozess durchgeführt werden.

Der Nullpunktabgleich ist eine Einpunkteinstellung. Diese ist sinnvoll zur Kompensation der Einflüsse der Einbaulage. Sie sollte erst dann durchgeführt werden, wenn der Messumformer in seiner endgültigen Position installiert ist. Da bei dieser Korrektur die Steigung der Kennlinie beibehalten wird, sollte sie nicht anstelle eines Sensorabgleichs über den gesamten Messbereich des Sensors verwendet werden.

Hinweis

Keinen Nullpunktabgleich an einem Rosemount Druckmessumformer 2088A für Absolutdruck vornehmen. Der Nullpunkt bezieht sich auf 0 als Druckwert, und der Messumformer für Absolutdruck bezieht sich auf einen absoluten Druckwert von 0. Zur Korrektur der Einflüsse der Einbaulage bei einem Rosemount Druckmessumformer 2088A für Absolutdruck einen Abgleich des unteren Wertes innerhalb des Sensorabgleiches durchführen. Der Abgleich des unteren Wertes führt eine Offsetkorrektur ähnlich wie beim Nullpunktabgleich durch, ein Eingang für den Nullpunkt ist jedoch nicht erforderlich.

Der obere und untere Sensorabgleich ist eine Zweipunkteinstellung des Sensors, bei der die beiden Druck-Endwerte eingestellt und alle zwischen diesen beiden Werten liegenden Ausgangswerte linearisiert werden. Hierfür ist eine genaue Druckquelle erforderlich. Immer zuerst den unteren Abgleichswert einstellen, um den korrekten Offset festzulegen. Durch die Einstellung des oberen Abgleichswertes wird die Steigung der Kennlinie basierend auf dem unteren Abgleichswert korrigiert. Mithilfe der Abgleichswerte kann die Genauigkeit des Messumformers über einen angegebenen Messbereich optimiert werden.

Abbildung 5-2. Beispiel Sensorabgleich

5.5.2 Sensorabgleich durchführen

Bei der Durchführung eines Sensorabgleichs können sowohl die obere als auch die untere Sensorgrenze abgeglichen werden. Wenn sowohl der obere als auch der untere Abgleich durchgeführt werden, muss der untere Abgleich vor dem oberen Abgleich erfolgen.

A Hinweis

Eine Quelle für den Eingangsdruck verwenden, die mindestens viermal genauer ist als der Messumformer. Vor der Eingabe eines Werts 10 Sekunden lang warten, damit sich der Druck stabilisieren kann.

Sensorabgleich mit dem Handterminal durchführen

Die Funktionstastenfolge vom *HOME*-Bildschirm aus eingeben und den auf dem Handterminal angezeigten Schritten folgen, um den Sensorabgleich durchzuführen..

Funktionstastenfolge des Geräte-Dashboards	3, 4, 1
--	---------

Kalibrieren des Sensors mit einem Handterminal unter Verwendung des Sensorabgleichs:

1. **2: Lower Sensor Trim** (Unterer Sensorabgleich) auswählen.

Hinweis

Die Druckwerte so auswählen, dass der untere und der obere Wert dem erwarteten Betriebsbereich des Prozesses entsprechen oder außerhalb dieses Bereiches liegen. Anweisungen hierfür siehe Messumformer neu einstellen auf Seite 15 von Abschnitt 2.

- 2. Den Anweisungen des Handterminals folgen, um die Einstellung des unteren Wertes auszuführen.
- 3. **3: Upper Sensor Trim** (Oberer Sensorabgleich) auswählen.
- 4. Den Anweisungen des Handterminals folgen, um die Einstellung des oberen Wertes auszuführen.

Sensorabgleich mit AMS Device Manager durchführen

Mit der rechten Maustaste auf den Messumformer klicken und dann den Cursor im Dropdown-Menü *Method* (Methode) über *Calibrate* (Kalibrieren) positionieren. Unter *Sensor Trim* (Sensorabgleich) die Option **Lower Sensor Trim** (Unterer Sensorabgleich) auswählen.

- 1. Den Menüanweisungen folgen, um den Sensorabgleich mit AMS Device Manager durchzuführen.
- Falls gewünscht, mit der rechten Maustaste auf den Messumformer klicken und dann den Cursor im Dropdown-Menü *Method* (Methode) über *Calibrate* (Kalibrieren) positionieren. Unter *Sensor Trim* (Sensorabgleich) die Option Upper Sensor Trim (Oberer Sensorabgleich) auswählen.

Sensorabgleich mittels Bedieninterface durchführen

Abbildung 5-3 als Referenz verwenden, um den oberen und unteren Sensorabgleich durchzuführen.

Abbildung 5-3. Sensorabgleich mittels Bedieninterface

Digitalen Nullpunktabgleich durchführen (Option DZ)

Der digitale Nullpunktabgleich (Option DZ) hat die gleiche Funktion wie der Nullpunktabgleich bzw. der untere Sensorabgleich, kann jedoch zu jedem beliebigen Zeitpunkt in explosionsgefährdeten Bereichen durchgeführt werden. Dazu einfach die Taste für den Nullpunktabgleich bei Nulldruck des Messumformers drücken. Befindet sich der Messumformer nicht nahe genug am Nullpunkt, wenn die Taste gedrückt wird, kann der Befehl aufgrund einer übermäßigen Korrektur fehlschlagen. Wenn der Messumformer mit digitalem Nullpunktabgleich bestellt wird, kann diese Funktion mithilfe der externen Konfigurationstasten durchgeführt werden, die unter dem oberen Metallschild des Messumformers zu finden sind (siehe Abbildung 5-1 auf Seite 58 bzgl. der Anordnung der Tasten bei Bestellung von Option DZ).

- 1. Das obere Metallschild des Messumformers lösen, um Zugang zu den Tasten zu erhalten.
- 2. Die Taste für den digitalen Nullpunktabgleich für mindestens zwei Sekunden drücken, um einen digitalen Nullpunktabgleich durchzuführen.

5.5.3 Zurücksetzen auf Werksabgleich – Sensorabgleich

Der Befehl Zurücksetzen auf Werksabgleich – Sensorabgleich ermöglicht das Zurücksetzen der Werte für den Sensorabgleich auf die werkseitigen Einstellungen. Dieser Befehl kann verwendet werden, wenn bei einem Messumformer für Absolutdruck versehentlich eine Nullpunkteinstellung durchgeführt oder eine ungenaue Druckquelle verwendet wurde.

Zurücksetzen auf Werksabgleich mit dem Handterminal

Die Funktionstastenfolge vom *HOME*-Bildschirm aus eingeben und den auf dem Handterminal angezeigten Schritten folgen, um den Sensorabgleich durchzuführen.

Funktionstastenfolge des Geräte-Dashboards3, 4, 3

Zurücksetzen auf Werksabgleich mittels AMS Device Manager

- 1. Mit der rechten Maustaste auf den Messumformer klicken, dann den Cursor im Dropdown-Menü *Method* (Methode) über *Calibrate* (Kalibrieren) positionieren und die Option **Restore Factory Calibration** (Werkseinstellung wiederherstellen) auswählen.
- 2. Den Messkreis auf Handbetrieb schalten.
- 3. Auf **Next** (Weiter) klicken.
- 4. **Sensor Trim** (Sensorabgleich) unter *Trim to recall* (Auf Werksabgleich zurücksetzen) auswählen und dann auf **Next** (Weiter) klicken.
- 5. Den Menüanweisungen folgen, um den Sensorabgleich auf die Werkseinstellung zurückzusetzen.

Zurücksetzen auf Werksabgleich – Sensorabgleich mittels Bedieninterface

Abbildung 5-4 als Referenz verwenden, um den Sensorabgleich auf die Werkseinstellung zurückzusetzen.

Abbildung 5-4. Zurücksetzen auf Werksabgleich – Sensorabgleich mittels Bedieninterface

5.6 Analogausgang abgleichen

Der Befehl Analogausgang abgleichen ermöglicht die Einstellung der aktuellen 4- und 20-mA-Punkte des Messumformerausgangs auf die Anlagenparameter. Dieser Abgleich wird nach der Digital/Analog-Signalwandlung durchgeführt und hat dadurch nur Einfluss auf das 4-20-mA-Analogsignal. Abbildung 5-5 zeigt eine grafische Darstellung der beiden Möglichkeiten, wie die Kennlinie durch den Abgleich des Analogausgangs beeinflusst werden kann.

5.6.1 Digital/Analog-Abgleich (Abgleich des 4-20 mA/1-5-V-Ausgangs) durchführen

Hinweis

Wenn ein Widerstand in den Messkreis eingefügt wird, sicherstellen, dass die Spannungsversorgung ausreicht, um den Messumformer mit einem zusätzlichen Messkreiswiderstand auf 20 mA zu bringen. Siehe Spannungsversorgung auf Seite 49.

Abgleich des 4-20-mA/1-5-V-Ausgangs mittels Handterminal durchführen

Die Funktionstastenfolge vom *HOME*-Bildschirm aus eingeben und den auf dem Handterminal angezeigten Schritten folgen, um den Abgleich des 4-20-mA-Ausgangs durchzuführen.

Funktionstastenfolge des Geräte-Dashboards 3, 4, 2, 1

Abgleich des 4-20-mA/1-5-V-Ausgangs mittels AMS Device Manager durchführen

Mit der rechten Maustaste auf den Messumformer klicken, dann den Cursor im Dropdown-Menü *Method* (Methode) über *Calibrate* (Kalibrieren) positionieren und die Option **Analog Calibration** (Kalibrierung des Analogausgangs) auswählen.

- 1. **Digital to Analog Trim** (Digital/Analog-Abgleich) auswählen.
- 2. Den Menüanweisungen folgen, um den Abgleich des 4-20-mA-Ausgangs durchzuführen.
Abgleich des 4-20-mA/1-5-V-Ausgangs mittels Bedieninterface durchführen

Abbildung 5-6. Abgleich des 4-20-mA-Ausgangs mittels Bedieninterface

5.6.2 Skalierten Digital/Analog-Abgleich (Abgleich des 4-20-mA/1-5-V-Ausgangs) durchführen

Der Befehl Skalierter Abgleich des 4-20-mA-Ausgangs passt die 4- und 20-mA-Werte auf eine vom Bediener gewählte Referenzskala (nicht 4 und 20 mA) an (z. B. 2 bis 10 V bei der Messung über einen 500- Ω -Widerstand oder 0 bis 100 Prozent bei Messung mit einem Leitsystem). Zur Durchführung eines skalierten Abgleich des 4-20-mA-Ausgangs eine genaue Referenzanzeige an den Messumformer anschließen und das Ausgangssignal entsprechend dem Verfahren unter "Analogausgang abgleichen" an die Skala anpassen.

Skalierten Abgleich des 4-20-mA/1-5-V-Ausgangs mittels Handterminal durchführen

Die Funktionstastenfolge vom *HOME*-Bildschirm aus eingeben und den auf dem Handterminal angezeigten Schritten folgen, um den skalierten Abgleich des 4-20-mA-Ausgangs durchzuführen..

Funktionstastenfolge des Geräte-Dashboards3, 4, 2, 2

▲ Skalierten Abgleich des 4-20-mA/1-5-V-Ausgangs mittels AMS Device Manager durchführen

- 1. Mit der rechten Maustaste auf den Messumformer klicken, dann den Cursor im Dropdown-Menü *Method* (Methode) über *Calibrate* (Kalibrieren) positionieren und die Option **Analog Calibration** (Kalibrierung des Analogausgangs) auswählen.
- 2. **Scaled Digital to Analog Trim** (Skalierter Digital/Analog-Abgleich) auswählen.
- 3. Den Menüanweisungen folgen, um den skalierten Abgleich des 4-20-mA/1-5-V-Ausgangs durchzuführen.

5.6.3 Zurücksetzen auf Werksabgleich – Analogausgang

Der Befehl "Zurücksetzen auf Werksabgleich – Analogausgang" ermöglicht das Zurücksetzen der Werte für den Abgleich des Analogausgangs auf die werkseitigen Einstellungen. Dieser Befehl kann nützlich sein, wenn ein unbeabsichtigter Abgleich ausgeführt wurde oder wenn falsche Anlagenparameter bzw. ein defektes Anzeigegerät verwendet wurden.

Zurücksetzen auf Werksabgleich – Analogausgang mittels Handterminal

Die Funktionstastenfolge vom *HOME*-Bildschirm aus eingeben und den auf dem Handterminal angezeigten Schritten folgen, um den skalierten Digital/Analog-Abgleich durchzuführen.

Funktionstastenfolge des Geräte-Dashboards 3, 4, 3

Zurücksetzen auf Werksabgleich – Analogausgang mittels AMS Device Manager

- 1. Mit der rechten Maustaste auf den Messumformer klicken, dann den Cursor im Dropdown-Menü *Method* (Methode) über *Calibrate* (Kalibrieren) positionieren und die Option **Restore Factory Calibration** (Werkseinstellung wiederherstellen) auswählen.
- 2. Auf **Next** (Weiter) klicken, nachdem der Messkreis auf Manuell gesetzt wurde.
- 3. **Analog Output Trim** (Analogausgang abgleichen) unter *Select trim to recall* (Auf Werksabgleich zurücksetzen) auswählen und dann auf **Next** (Weiter) klicken.
- 4. Den Menüanweisungen folgen, um den Abgleich des Analogausgangs auf die werkseitigen Einstellungen zurückzusetzen.

Zurücksetzen auf Werksabgleich – Analogausgang mittels Bedieninterface

Anweisungen für das Zurücksetzen mittels Bedieninterface sind in Abbildung 5-7 zu finden.

Abbildung 5-7. Zurücksetzen auf Werksabgleich – Analogausgang mittels Bedieninterface

5.7 HART Version umschalten

Manche Systeme können nicht mit Geräten mit HART Version 7 kommunizieren. Die folgenden Verfahren geben an, wie zwischen HART Version 7 und HART Version 5 gewechselt werden kann.

5.7.1 Umschalten der HART Version mittels generischem Menü

Wenn das HART Konfigurationstool nicht mit einem Gerät mit HART Version 7 kommunizieren kann, sollte ein generisches Menü mit begrenzten Funktionen geladen werden. Die folgenden Verfahren geben an, wie mithilfe eines generischen Menü zwischen HART Version 7 und HART Version 5 gewechselt werden kann.

- 1. Das Nachrichtenfeld ("Message") suchen.
 - a. Um die Betriebsart auf HART Version 5 zu ändern, HART5 in das Nachrichtenfeld eingeben.
 - b. Um die Betriebsart auf HART Version 7 zu ändern, HART7 in das Nachrichtenfeld eingeben.

5.7.2 Umschalten der HART Version mittels Handterminal

Die Funktionstastenfolge vom HOME-Bildschirm aus eingeben und den auf dem Handterminal angezeigten Schritten folgen, um die HART Version zu wechseln.

Die folgende Funktionstastenfolge vom HOME-Bildschirm aus eingeben:	HART5	HART7
Funktionstastenfolge des Geräte-Dashboards	2, 2, 5, 2, 4	2, 2, 5, 2, 3

5.7.3 Ändern der HART Version mittels AMS Device Manager

- 1. Auf **Manual Setup** (Manuelle Einrichtung) klicken und dann **HART** auswählen.
- 2. **Change HART Revision** (HART Version ändern) auswählen und dann den Menüanweisungen folgen.

Hinweis

AMS Device Manager Versionen ab 10.5 sind mit HART Version 7 kompatibel.

5.7.4 Umschalten der HART Version mittels Bedieninterface

Im erweiterten Menü zu *HART REV* (HART Version) navigieren und entweder *HART REV 5* oder *HART REV 7* auswählen. Abbildung 5-8 als Referenz verwenden, um die HART Version zu ändern.

Abschnitt 6 Störungsanalyse und -beseitigung

Übersicht	Seite 69
Sicherheitshinweise	Seite 69
Diagnosemeldungen	Seite 71
Demontageverfahren	Seite 74
Montageverfahren	Seite 75

6.1 Übersicht

Tabelle 6-1 enthält eine Zusammenfassung von Hinweisen zur Wartung sowie zur Störungsanalyse und -beseitigung der am häufigsten auftretenden Betriebsprobleme.

Wird eine Funktionsstörung vermutet und es erscheinen keine Diagnosemeldungen auf der Anzeige des Handterminals, wird empfohlen, den Abschnitt 6.3 auf Seite 71 zu verwenden, um ein potenzielles Problem zu identifizieren.

6.2 Sicherheitshinweise

Zur Sicherheit für den Bediener können Verfahren und Anweisungen in diesem Kapitel besondere Vorsorge erfordern. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol (\triangle) markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

6.2.1 Warnungen

🛦 WARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen.

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend den lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation des Rosemount 2088 finden Sie im Abschnitt "Produkt-Zulassungen" in dieser Betriebsanleitung.

- Vor Anschluss eines Handterminals in einer explosionsgefährdeten Umgebung sicherstellen, dass die Geräte im Messkreis in Übereinstimmung mit den Vorschriften für eigensichere oder keine Funken erzeugende Feldverdrahtung installiert sind.
- Bei einer Installation mit Ex-Schutz/druckfester Kapselung die Messumformer-Gehäusedeckel nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Stromschläge können schwere oder tödliche Verletzungen verursachen.

 Kontakt mit Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

Та	belle 6-1. Störungsanalyse und	l -beseitigung des 4-20-mA-Ausgangs des Rosemount 2088
	Symptom	Abhilfemaßnahmen

Symptom	
Messumformer mA-Ausgang	Überprüfen, ob die Spannung an den Signalklemmen 10,5 bis 42,4 VDC beträgt.
	Die Spannungsversorgungsleiter auf richtige Polarität prüfen.
	Überprüfen, ob die Spannungsversorgungsleiter an den Signalklemmen angeschlossen sind.
	Auf eine offene Diode über den Testklemmen prüfen.
Messumformer kommuniziert	Überprüfen, ob die Spannung an den Klemmen 10,5 bis 42,4 VDC beträgt.
nicht mit Handterminal	Prüfen, ob die Messkreisbürde mindestens 250Ω (Versorgungsspannung – Messumformerspannung/Messkreisspannung) beträgt.
	Überprüfen, ob die Spannungsversorgungsleiter an den Signalklemmen (und nicht an den Testklemmen) angeschlossen sind.
	Auf eine saubere Gleichspannungsversorgung zum Messumformer prüfen (max. AC-Rauschen 0,2 V Spitze zu Spitze).
	Überprüfen, ob der Ausgang zwischen 4 und 20 mA oder den Sättigungswerten liegt.
	Alle Adressen durch das Handterminal abfragen lassen.
Messumformer mA-Ausgang ist	Den angelegten Druck überprüfen.
noch öder hledrig	4- und 20-mA-Punkt überprüfen.
	Sicherstellen, dass der Ausgang kein Alarmzustand ist.
	Analogabgleich durchführen.
	Überprüfen, ob die Spannungsversorgungsleiter an den richtigen Signalklemmen (Plus an Plus und Minus an Minus) angeschlossen sind (und nicht an den Testklemmen).
Messumformer reagiert nicht auf Änderung des angelegten Betriebsdrucks	Impulsleitungen oder Ventilblock auf Blockierung prüfen.
	Prüfen, ob der angelegte Druck zwischen den 4 und 20 mA Werten liegt.
	Sicherstellen, dass der Ausgang kein Alarmzustand ist.
	Sicherstellen, dass der Messumformer nicht in den Modus Messkreistest geschaltet wurde.
	Sicherstellen, dass der Messumformer nicht in den Modus Multidrop geschaltet wurde.
	Testausrüstung prüfen.
Angezeigte digitale Druckvariable ist hoch oder	Impulsleitungen auf Blockierung oder niedrigen Füllstand der befüllten Leitungen prüfen.
nieding	Überprüfen, ob der Messumformer richtig kalibriert ist.
	Testausrüstung prüfen (insbesondere die Genauigkeit).
	Die Berechnung des Drucks für die Anwendung überprüfen.
Angezeigte digitale	Die Anwendung auf defekte Ausrüstung in der Druckleitung prüfen.
	Überprüfen, ob der Messumformer direkt auf das Ein- und Ausschalten von Geräten reagiert.
	Überprüfen, ob die Dämpfung für die Anwendung richtig eingestellt ist.
mA-Ausgang ist instabil	Überprüfen, ob die Spannungsversorgung zum Messumformer eine ausreichende Spannung und Stromstärke aufweist.
	Auf externe elektrische Störungen prüfen.
	Überprüfen, ob der Messumformer richtig geerdet ist.
	Sicherstellen, dass die Abschirmung für das verdrillte Adernpaar nur an einem Ende geerdet ist.

6.3 Diagnosemeldungen

Die nachfolgenden Tabellen enthalten eine detaillierte Beschreibung der möglichen Meldungen, die auf dem Digitalanzeiger/Bedieninterface, dem Handterminal oder einem AMS Device Manager System erscheinen können. Diese Tabellen verwenden, um den Handlungsbedarf für bestimmte Statusmeldungen zu bestimmen:

- Gut
- Fehler Jetzt beheben
- Wartung Bald beheben
- Hinweis

6.3.1 Diagnosemeldung: Fehler – Jetzt beheben

Alarm- Name	Digitalanzei- ger	Bedienin- terface	Problem	Empfohlene Maßnahme
Keine Druckaktualisie- rungen	NO P UPDATE	NO PRESS UPDATE	Der Sensor sendet keine aktualisierten Druckwerte an die Elektronik.	 Sicherstellen, dass die Kabel zwischen Sensor und Elektronik fest angeschlossen sind. Druckmessumformer austauschen.
Störung der Elek- tronikplatine	FAIL BOARD	FAIL BOARD	Es wurde eine Störung der Elektronikplatine erkannt.	1. Die Elektronikplatine austauschen.
Kritischer Sensor- datenfehler	MEMRY	MEMORY	Ein vom Anwender geschriebener Parameter entspricht nicht dem erwarteten Wert.	 Alle in den Geräteinformationen aufgelisteten Parameter bestätigen und ggf. korrigieren. Das Gerät zurücksetzen. Druckmessumformer austauschen.
Kritischer Elektro- nikdatenfehler			Ein vom Anwender geschriebener Parameter entspricht nicht dem erwarteten Wert.	 Alle in den Geräteinformationen aufgelisteten Parameter bestätigen und ggf. korrigieren. Das Gerät zurücksetzen. Die Elektronikplatine austauschen.
Sensorausfall	FAIL SENSOR	FAIL SENSOR	Es wurde eine Störung im Drucksensor erkannt.	1. Druckmessumformer austauschen.
Elektronik und Sensor sind nicht kompatibel	XMTR MSMTCH	XMTR MSMTCH	Der Drucksensor ist nicht mit der angeschlossenen Elektronik kompatibel.	1. Elektronikplatine oder Sensor durch kompatible Komponenten ersetzen.

Tabelle 6-2. Status: Fehler – Jetzt beheben

6.3.2 Diagnosemeldung: Wartung – Bald beheben

Tabelle 6-3. Status: Wartung – Bald beheben

Alarm-Name	Digitalan- zeiger	Bedienin- terface	Problem	Empfohlene Maßnahme
Keine Temperaturak- tualisierungen	NO T UPDATE	NO TEMP UPDATE	Der Sensor sendet keine aktualisierten Temperaturwerte an die Elektronik.	 Sicherstellen, dass die Kabel zwischen Sensor und Elektronik fest angeschlossen sind. Druckmessumformer austauschen.
Druck außerhalb der Grenzwerte	PRES LIMITS	PRES OUT LIMITS	Der Druck liegt über oder unter den Sensorgrenzen.	 Den Druckanschluss des Messumformers prüfen, um zu gewährleisten, dass der Anschluss nicht verstopft ist bzw. dass die Trennmembranen nicht beschädigt sind. Druckmessumformer austauschen.
Sensortempe- ratur außerhalb der Grenzwerte	TEMP	TEMP OUT	Die Sensortemperatur hat den sicheren Betriebsbereich überschritten.	 Überprüfen, ob die Prozess- und Umgebungstemperaturen -65 bis 90 °C (-85 bis 194 °F) betragen. Druckmessumformer austauschen.
Elektroniktem- peratur außerhalb der Grenzwerte	LIMITS	LIMITS LIMITS Die Temperatur des Elektronikmoduls hat den sic Betriebsbereich überschrit		 Bestätigen, dass die Elektroniktemperatur innerhalb der Grenzwerte von -65 bis 90 °C (-85 bis 194 °F) liegt. Die Elektronikplatine austauschen.
Parameterfeh- ler der Elektro- nikplatine	MEMRY WARN (außerdem unter "Hinweis")	MEMORY WARN (außerdem unter "Hinweis")	Ein Geräteparameter entspricht nicht dem erwarteten Wert. Der Fehler hat keinen Einfluss auf den Betrieb oder Analogausgang des Messumformers.	1. Die Elektronikplatine austauschen.
Bedienerfehler der Einstelltasten	STUCK BUTTON	STUCK BUTTON	Das Gerät reagiert nicht auf einen Tastendruck.	 Sicherstellen, dass die Einstelltasten nicht klemmen. Die Elektronikplatine austauschen.

6.3.3 Diagnosemeldungen: Warnhinweis

Tabelle 6-4. Status: Warnhinweis

Alarm-Name	Digitalan- zeiger	Bedienin- terface	Problem	Empfohlene Maßnahme
Nicht- kritische			Ein vom Anwender geschriebener Parameter	 Alle in den Geräteinformationen aufgelisteten Parameter bestätigen und ggf. korrigieren.
Benutzerda-	a-		entspricht nicht dem	2. Das Gerät zurücksetzen.
tenwarnung	MEMRY	MEMORY	erwarteten Wert.	3. Die Elektronikplatine austauschen.
Sensorpara-	WARN	WARN	Ein vom Anwender geschriebener Parameter	 Alle in den Geräteinformationen aufgelisteten Parameter bestätigen und ggf. korrigieren.
Warnhinweis			entspricht nicht dem	2.Das Gerät zurücksetzen.
			erwarteten Wert.	3. Druckmessumformer austauschen.
Digitalanzei-	[wenn das Display nicht	[wenn das Display	Der Digitalanzeiger empfängt	 Die Verbindung zwischen Digitalanzeiger und Platine pr
Aktualisie-	aktualisiert	nicht	keine aktualisierten Daten vom	2. Den Digitalanzeiger austauschen.
rungsfehler	wird]	wird]	Drucksensor.	3. Die Elektronikplatine austauschen.
			And Contraction de la Contraction de la contraction	 Sicherstellen, dass die Konfigurationsänderung des Geräts beabsichtigt und erwartet war.
Konfiguration	[keine Anzeige]	[keine Anzeige]	Am Gerat wurde kurzlich eine Änderung durch einen sekundären HART Master wie	2. Diese Warnung durch Auswahl von "Clear Configuration Changed Status" löschen.
geändert			ein Handheld-Gerät vorgenommen.	3. Einen HART Master wie den AMS Device Manager oder ein ähnliches
				Konfigurationstool anschließen, mit dem die Meldung automatisch gelöscht werden kann.
			Der Analogausgang ist	1. Bei anderen Meldungen des Geräts entsprechende Maßnahmen ergreifen.
Analogaus-	ANLOG	ANALOG	feststehend und spiegelt die Prozessdaten nicht wider. Dies kann durch andere Bedingungen im Gerät oder	 Wenn das Gerät in den Messkreistest geschaltet wurde und der Test abgeschlossen ist, die Testfunktion deaktivieren oder das Gerät aus- und einschalten.
gang fixiert	FIXED	FIXED	durch Einstellung des Geräts auf	3. Wenn das Gerät in die Betriebsart Multidrop
			den Messkreistest oder die	geschaltet wurde und dies nicht mehr
			Betriebsart Multidrop	notwendig ist, den Messkreisstrom durch
			verdisaent werden.	aktivieren
			Das Gerät befindet sich im	1. Sicherstellen, dass die Simulation nicht mehr erforderlich ist.
Simulation aktiv	[keine Anzeige]	[keine Anzeige]	Simulationsmodus und gibt ggf. keine aktuellen Informationen	2. Simulationsmodus in Service Tools deaktivieren.
			aus.	3. Das Gerät zurücksetzen.
			Der Analogausgang wurde auf	 Den angelegten Druck pr
Analogausgan g gesättigt	ANLOG SAT	ANALOG SAT	einen hohen oder niedrigen Sättigungswert gesetzt, da der Druck die Messbereichswerte unter- oder überschritten hat.	 Den Druckanschluss des Messumformers prüfen, um zu gewährleisten, dass der Anschluss nicht verstopft ist bzw. dass die Trennmembranen nicht beschädigt sind.
				3. Druckmessumformer austauschen.

6.4 Demontageverfahren

In explosionsgefährdeten Bereichen den Gehäusedeckel des Geräts nicht abnehmen, wenn der Stromkreis unter Spannung steht.

6.4.1 Messumformer außer Betrieb nehmen

- 1. Alle Richtlinien und Verfahren für die Anlagensicherheit beachten.
- 2. Die Spannungsversorgung des Geräts ausschalten.
- 3. Den Messumformer vom Prozess trennen und entlüften, bevor der Messumformer außer Betrieb genommen wird.
- 4. Alle elektrischen Leiter und das Schutzrohr abklemmen.
- 5. Den Messumformer vom Prozessanschluss abschrauben.
 - a. Der Rosemount Messumformer 2088 ist mit einer einzelnen Sechskantmutter am Prozessanschluss montiert. Die Sechskantmutter lockern, um den Messumformer vom Prozess zu trennen.

Hinweis

Keinen Schraubenschlüssel am Stutzen des Messumformers ansetzen. Die Warnung unter "Prozessanschluss mit Inline-Flansch" auf Seite 40 beachten.

- 6. Die Trennmembranen nicht verkratzen, durchstechen oder zusammendrücken.
- 7. Die Trennmembranen mit einem weichen Tuch und einer milden Reinigungslösung reinigen und mit sauberem Wasser abspülen.

6.4.2 Anschlussklemmenblock ausbauen

Die elektrischen Anschlüsse befinden sich am Anschlussklemmenblock in dem mit FIELD TERMINALS (Feldanschlussklemmen) gekennzeichneten Gehäuseraum.

- 1. Den Gehäusedeckel auf der Seite mit den Anschlussklemmen abnehmen.
- 2. Die beiden kleinen Schrauben in der 9-Uhr-Stellung und in der 5-Uhr-Stellung (zur Oberseite des Messumformers gesehen) an der Baugruppe lösen.
- 3. Den gesamten Anschlussklemmenblock aus dem Gehäuse herausziehen und abnehmen.

6.4.3 Elektronikplatine ausbauen

Die Elektronikplatine des Messumformers befindet sich in der den Anschlussklemmen gegenüberliegenden Gehäusekammer. Beim Ausbau der Elektronikplatine die Abbildung 4-1 auf Seite 44 als Referenz verwenden und wie folgt vorgehen:

- 1. Den Gehäusedeckel auf der Seite, die der Seite mit der Aufschrift Field Terminals (Anschlussklemmen) gegenüber liegt, entfernen.
- Wenn der zu demontierende Messumformer mit einem Digitalanzeiger/ Bedieninterface ausgestattet ist, die beiden unverlierbaren Schrauben lösen, die sichtbar sind (siehe Abbildung 4-3 auf Seite 47 bzgl. der Anordnung der Schrauben). Die beiden Schrauben befestigen den Digitalanzeiger/das Bedieninterface an der Elektronikplatine und die Elektronikplatine am Gehäuse.

A Siehe "Sicherheitshinweise" auf Seite 69 bzgl. vollständiger Warnungsinformationen.

Hinweis

Die Elektronikplatine ist elektrostatisch empfindlich; die entsprechenden Handhabungsvorschriften für statisch empfindliche Komponenten befolgen.

 Die Elektronikplatine mit den beiden unverlierbaren Schrauben aus dem Gehäuse ziehen. Das Sensormodul-Flachkabel fixiert die Elektronikplatine am Gehäuse. Auf die Steckerverriegelung drücken, um das Flachkabel zu lösen.

Hinweis

Beim Ausbau des Digitalanzeigers/Bedieninterface vorsichtig vorgehen, da das Anzeigegerät über elektronische Pins verfügt, die die Verbindung zwischen Digitalanzeiger/Bedieninterface und Elektronikplatine herstellen.

6.4.4 Sensormodul aus dem Elektronikgehäuse ausbauen

1. Die Elektronikplatine ausbauen. Siehe "Elektronikplatine ausbauen" auf Seite 74.

Wichtig

Um Schäden am Sensormodul-Flachkabel zu verhindern, das Kabel von der Elektronikplatine trennen, bevor das Sensormodul aus dem Elektronikgehäuse ausgebaut wird.

2. Den Kabelstecker vorsichtig vollständig in die interne schwarze Kappe schieben.

Hinweis

Das Gehäuse erst dann entfernen, nachdem der Kabelstecker vorsichtig vollständig in die interne schwarze Kappe geschoben wurde. Die schwarze Kappe schützt das Flachkabel vor Beschädigungen, die beim Drehen des Gehäuses auftreten können.

- 3. Die Gehäusesicherungsschraube mit einem ⁵/₆₄-in.-Sechskantschlüssel eine volle Umdrehung lösen.
- 4. Das Modul vom Gehäuse abschrauben und dabei sicherstellen, dass die schwarze Kappe am Sensormodul und das Sensorkabel nicht am Gehäuse hängen bleiben.

6.5 Montageverfahren

- 1. Alle (nicht mediumberührten) O-Ringe von Deckel und Gehäuse untersuchen und falls erforderlich austauschen. Die O-Ringe leicht mit Silikonfett schmieren, um eine gute Abdichtung zu gewährleisten.
- 2. Den Kabelstecker vorsichtig vollständig in die interne schwarze Kappe schieben. Hierfür die schwarze Kappe und das Kabel eine Umdrehung gegen den Uhrzeigersinn drehen, um das Kabel zu spannen.
- 3. Das Elektronikgehäuse auf das Modul absenken. Die interne schwarze Kappe und das Kabel am Sensormodul durch das Gehäuse und in die externe schwarze Kappe führen.
- 4. Das Modul im Uhrzeigersinn in das Gehäuse schrauben.

Wichtig

Sicherstellen, dass das Sensormodul-Flachkabel und die interne schwarze Kappe beim Drehen nicht am Gehäuse hängen bleiben. Wenn die interne schwarze Kappe und das Flachkabel hängen bleiben und sich mit dem Gehäuse drehen, kann das Kabel beschädigt werden.

- 5. Das Gehäuse vollständig auf das Sensormodul aufschrauben. Das Gehäuse nur so weit aufschrauben, dass es bis auf eine Umdrehung mit dem Sensormodul fluchtet, um die Anforderungen für Ex-Schutz zu erfüllen.
 - 6. Die Gehäusesicherungsschraube mit einem ⁵/₆₄-in.-Sechskantschlüssel anziehen.

6.5.1 Elektronikplatine anbringen

- 1. Den Kabelstecker aus der internen schwarzen Kappe herausziehen und an der Elektronikplatine anbringen.
- 2. Die Elektronikplatine unter Verwendung der beiden unverlierbaren Schrauben als Griff in das Gehäuse einsetzen. Sicherstellen, dass die Spannungsversorgungsstifte am Elektronikgehäuse ordnungsgemäß in die Buchsen auf der Elektronikplatine eingreifen.

Hinweis

Die Platine nicht mit Gewalt eindrücken. Die Elektronikplatine muss leicht in die Anschlüsse gleiten.

- 3. Die unverlierbaren Befestigungsschrauben festziehen.
- 4. Den Deckel des Elektronikgehäuses wieder anbringen. Die Messumformer-Gehäusedeckel müssen vollständig eingeschraubt werden, so dass sich Deckel- und Gehäuserand berühren, um eine ordnungsgemäße Abdichtung zu gewährleisten und die Ex-Schutz Anforderungen zu erfüllen.

6.5.2 Anschlussklemmenblock einbauen

- 1. Den Anschlussklemmenblock vorsichtig einschieben und darauf achten, dass die beiden Spannungsversorgungsstifte am Elektronikgehäuse ordnungsgemäß in die Buchsen am Anschlussklemmenblock eingreifen.
 - 2. Die unverlierbaren Schrauben festziehen.
 - 3. Den Deckel des Elektronikgehäuses wieder anbringen. Die Messumformer-Gehäusedeckel müssen vollständig geschlossen sein, um die Ex-Schutz-Anforderungen zu erfüllen.

6.5.3 Ablass-/Entlüftungsventil einbauen

- 1. Dichtungsband am Gewinde des Ventilsitzes anbringen. Am unteren Ende des Ventils beginnend fünf Lagen des Dichtungsbandes im Uhrzeigersinn anbringen, wobei das Gewindeende zum Monteur zeigen muss.
- 2. Das Ablass-/Entlüftungsventilsitz mit 28,25 Nm (250 in-lb.) anziehen.
- 3. Die Öffnung am Ventil so ausrichten, dass die Prozessflüssigkeit beim Öffnen des Ventils zum Boden abfließen kann und Kontakt mit Menschen verhindert wird.

Anhang A Technische Daten

Leistungsdaten	. Seite 77
Funktionsdaten	. Seite 78
Geräteausführung	. Seite 81
Maßzeichnungen	. Seite 82
Bestellinformationen	. Seite 83
Optionen	. Seite 87

A.1 Leistungsdaten

Messspanne von Null ausgehend, Referenzbedingungen, Silikonölfüllung und Trennmembran aus Edelstahl 1.4404 (316L)

A.1.1 Referenzgenauigkeit (URL = obere Messbereichsgrenze)

±0,075 % der eingestellten Messspanne. Einschließlich der kombinierten Effekte von Linearität, Hysterese und Reproduzierbarkeit.

±0,065 % der eingestellten Messspanne (Option erhöhte Genauigkeit – P8) für Messspannen kleiner 10:1, Genauigkeit =± $\left[0.009\left(\frac{URL}{Span}\right)\right]$ % der Messspanne

Einfluss der Umgebungstemperatur

Gesamteffekt pro 28 $^{\circ}$ (50 $^{\circ}$) Im Gesamteffekt enthalten sind die Effekte von Nullpunkt und Messspanne. $_{\pm}(0,15\%$ der oberen Messbereichsgrenze +0,15\% der eingestellten Messspanne)

Langzeitstabilität

Messbereiche 2-4: $\pm 0,10$ % der oberen Messbereichsgrenze (URL) auf 3 Jahre Messbereich 1: $\pm 0,10$ % der oberen Messbereichsgrenze (URL) auf 1 Jahr

Einfluss von Vibrationen

Geringer als $\pm 0,1$ % der oberen Messbereichsgrenze (URL) bei Prüfung entsprechend den Anforderungen von IEC60770-1 Feld oder Rohrleitung mit hohen Vibrationen (10-60 Hz, 0,21 mm Amplitude/60-2000 Hz, 3 g).

Einfluss der Spannungsversorgung

Weniger als $\pm 0,005$ % der eingestellten Messspanne pro Volt Änderung, in Volt an den Anschlussklemmen des Messumformers.

Einfluss der Einbaulage

Nullpunktverschiebung bis zu ±6,22 mbar (2,5 inH₂O), kann vollständig kompensiert werden, kein Einfluss.

A.1.2 Überspannungsschutz

IEEE Standard 587, Kategorie B

Geprüft gemäß IEEE C62.41.2-2002, Standort Kategorie B 6-kV-Spannungsspitze (0,5 ms – 100 kHz) 3-kA-Impulsspitze (8 × 20 Mikrosekunden) 6-kV-Impulsspitze (1,2 × 50 Mikrosekunden)

A.1.3 Allgemeine Spezifikationen

Geprüft nach IEC 801-3

A.2 Funktionsdaten

Messbereichsanfang⁽¹⁾ Messbereichsanfang Min. Messbereichsende Messbereich (LRL) (Überdruck) Messspanne (URL) (LRL) 0,60 psi 30,00 psi -14.70 psig 0 psia 1 41,37 mbar (2,07 bar) (0 bar) (-1,01 bar) 3,00 psi 150,00 psi 0 psia -14,70 psig 2 206,85 mbar (10,34 bar) (0 bar) (-1,01 bar) 16,00 psi 800,00 psi 0 psia -14,70 psig 3 (1,11 bar) (55,16 bar) (0 bar) (-1,01 bar) 80,00 psi 4000,00 psi 0 psia -14,70 psiq 4 (0 bar) (5,52 bar) (275,79 bar) (-1,01 bar)

Tabelle 1. 2088 Messbereiche

(1) Angenommener Atmosphärendruck von 1,01 bar-a (14,70 psig).

A.2.1 Ausgang

Code S: 4-20 mA Code N: 1-5 Vdc, Low Power (Ausgänge direkt proportional zum Eingangsdruck)

Wählbare HART Version

Digitale Kommunikation kann basierend auf dem HART Protokoll Version 5 (Standard) oder Version 7 (Optionscode HR7) ausgewählt werden. Die HART Version kann im Feld mit jedem HART basierten Konfigurations-Hilfsmittel oder dem optionalen Bedieninterface geändert werden.

A.2.2 Einsatzbereiche

Flüssigkeiten, Gase und Dämpfe

A.2.3 Spannungsversorgung

Es ist eine externe Spannungsversorgung notwendig. Der Messumformer arbeitet mit 10,5-42,4 VDC ohne Bürdenwiderstand (5,8-28 V bei Niedrigspannung). Verpolungsschutz ist Standard.

A.2.4 Bürdengrenzen

Verpolungsschutz ist Standard. Die maximal zulässige Bürde des Messkreises ist abhängig von der Versorgungsspannung und lässt sich wie folgt bestimmen:

Abbildung A-1. Max. Messkreisbürde

Das Handterminal benötigt zur Kommunikation eine Messkreisbürde von mind. 250Ω.

Anzeiger

Optionaler zweizeiliger Digitalanzeiger/Bedieninterface.

Einstellung von Nullpunkt und Messspanne

Die Werte für Nullpunkt und Messspanne können innerhalb der Messbereichsgrenzen beliebig gesetzt werden; siehe Tabelle 1 auf Seite78. Die Messspanne muss größer oder gleich der min. Messspanne gemäß Tabelle 1 auf Seite78 sein.

Bedieninterface

Das Bedieninterface verfügt über ein 2-Tasten-Menü mit internen und externen Konfigurationstasten. Die internen Tasten sind stets für das Bedieninterface konfiguriert. Die externen Tasten können entweder für das Bedieninterface (Optionscode M4), für den analogen Nullpunkt und die Messspanne (Optionscode D4) oder für den digitalen Nullpunktabgleich (Option 0100-4108) konfiguriert werden.

Stromaufnahme

Code N: ≤ 3 mA

Überdruckgrenzen

Messbereich 1: Max. 8,27 bar (120 psig) Alle anderen Bereiche: Doppelte obere Messbereichsgrenze (URL)

Berstdruck

758,4 bar (11.000 psi) für alle Bereiche

Nullpunktanhebung und -unterdrückung

Der Nullpunkt kann bei Überdruck-Messumformern zwischen dem Atmosphärendruck bzw. bei Absolutdruck-Messumformern zwischen 0 psia und der oberen Messbereichsgrenze unterdrückt werden, vorausgesetzt, die kalibrierte Messspanne ist gleich oder größer als die min. Messspanne und der obere Messbereichswert überschreitet die obere Messbereichsgrenze nicht.

Dynamisches Verhalten

Gesamtansprechzeit: 145 ms Aktualisierungsrate: Min. 20 x pro Sekunde

A.2.5 Temperaturgrenzen

Umgebungstemperatur:

-40 bis 85 °C < (-40 bis 185 °F) – Mit Digitalanzeiger⁽¹⁾: -40 bis 176 °F (-40 bis 80 °C)⁽¹⁾

Speicher⁽¹⁾:

-50 bis 85 °C < (-46 bis 185 °F) – Mit Digitalanzeiger: -40 bis 85 °C < (-40 bis 185 °F)

Prozess-

Sensor mit Silikonfüllung: -40 bis 121 °C < (-40 bis 250 °F)⁽²⁾ Sensor mit inerter Füllung: -30 bis 121 °C < (-22 bis 250 °F)⁽²⁾

Bei einer Prozesstemperatur über 185 °F (85 °C) reduziert sich die zulässige Umgebungstemperatur im Verhältnis 1,5:1. Beispiel: Bei einer Prozesstemperatur von 91 °C (195 °F) ist die neue Umgebungstemperaturgrenze 77 °C (170 °F). Dies kann wie folgt ermittelt werden: (195 °F - 185 °F) x 1.5 = 15 °F, 185 °F - 15 °F = 170 °F

Zulässige Feuchte

0-100 % relative Feuchte

Verdrängungsvolumen

Kleiner als 0,008 cm³ (0,0005 in³)

Dämpfung

Die Dämpfung des Analogausgangs kann vom Anwender zwischen 0 und 60 Sekunden als eine Zeitkonstante eingestellt werden. Diese Dämpfung durch die Software ist zur Ansprechzeit des Sensors hinzuzuaddieren.

Betriebsbereitschaft

2,0 Sekunden, keine Aufwärmzeit erforderlich

Messumformer-Schreibschutz

Die Aktivierung der Sicherheitsfunktion verhindert Änderungen der Konfiguration des Messumformers, einschließlich Einstellungen für Nullpunkt und Messspannen. Sicherheit wird durch einen Schalter im Geräteinneren aktiviert.

⁽¹⁾ Einen Sensorabgleich vor der Installation durchführen, wenn die Lagertemperatur über 85 °C liegt. (2) Bei Betrieb im Unterdruck beträgt die maximale Temperatur 104 °C (220 °F), unterhalb von 0,5 psia maximal 54 °C (130 °F).

Alarmverhalten

Wird bei der ständigen Selbstüberwachung eine Störung des Sensors oder Mikroprozessors erkannt, so wird das Analogsignal auf einen hohen oder niedrigen Wert gesetzt, um so den Anwender zu alarmieren. Der Anwender kann mittels einer Steckbrücke am Messumformer wählen, ob im Störfall ein Hoch- oder Niedrigalarm anliegen soll. Die Ausgangswerte des Messumformers im Störfall hängen davon ab, ob werkseitig der *Standard-* oder *NAMUR-*Betrieb konfiguriert wurde. Die Werte für jeden Modus sind wie folgt:

Standardbetrieb

Ausgangscode	Linearer Ausgang	hochalarm	niedrigalarm
S	3,9≤1≤20.8	l ≥ 21,75 mA	l ≤ 3,75 mA
N	0,97 ≤ V ≤ 5,2	V≥5,4V	V ≤ 0,95 V
NAMUR-Betrieb			
Ausgangscode	Linearer ausgang	hochalarm	niedrigalarm
S	3,8≤1≤20,5	I ≥ 22,5 mA	l ≤ 3,6 mA

A.3 Geräteausführung

Elektrische Anschlüsse

 $^{1}/_{2}\text{--}14$ NPT, M20 \times 1,5 (CM20) oder G $^{1}/_{2}$ Innengewinde (PF $^{1}/_{2}$ Innengewinde) Leitungseinführung

Prozessanschlüsse

 $^1/2-14$ NPT Innengewinde, DIN 16288 G $^1/2$ Außengewinde, RC $^1/2$ Innengewinde (PT $^1/2$ Innengewinde), M20 \times 1,5 (CM20) Außengewinde

A.3.1 Mediumberührte Teile

Trennmembran

316L Edelstahl (UNS S31603), Alloy C-276 (UNS N10276)

Prozessanschluss

CF-3M (Gussausführung von Edelstahl 316L gemäß ASTM A743) oder Alloy C-276

A.3.2 Nicht mediumberührte Teile

Elektronikgehäuse

Kupferarmes Aluminium, Gehäuseschutzarten NEMA 4X, IP65, IP67 und CSA-Gehäusetyp 4X

Lackierung des Aluminiumgehäuses

Polyurethan

O-Ringe für Gehäusedeckel

Buna-N

Füllmedium

Silikon- oder Inertfüllung

Gewicht

Ausgangscode S und N: ca. 1,11 kg (2,44 lb)

A.4 Maßzeichnungen

A.5 Bestellinformationen

Tabelle 2. Bestellinformationen für Druckmessumformer Rosemount 2088

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Die erweiterten Angebote werden nach Bestellung hergestellt und sind mit längeren Lieferzeiten verbunden.

Modell	Produktbeschreibung			
Standard				
2088	Druckmessumformer			*
Code	Messart			
Standard				Standard
А	Absolutdruck			*
G	Überdruck			*
Code	Druckbereiche			
Standard				Standard
	2088G		2088A	
1	-1,01 bis 2,1 bar (-14,7 bi	s 30 psi)	0 bis 2,1 bar (0 bis 30 psi)	*
2	-1,01 bis 10,3 bar (-14,7 b	ois 150 psi)	0 bis 10,3 bar (0 bis 150 psi)	*
3	-1,01 bis 55,2 bar (-14,7 b	ois 800 psi)	0 bis 55,2 bar (0 bis 800 psi)	*
4	-1,01 bis 275,8 bar (-14,7	bis 4.000 psi)	0 bis 275,8 bar (0 bis 4.000 psi)	*
Code	Messumformerausgang	l		
Standard				Standard
S ⁽¹⁾	4–20 mA DC mit Digitalsi	gnal gemäß HART-Protok	coll	*
N ⁽¹⁾	1-5 VDC Niedrigspannung	g und Digitalsignal gemäß	3 HART Protokoll	*
Code	Werkstoffe			
Standard				Standard
	Prozessanschluss	Trennmembran	Füllflüssigkeit	
22 ⁽²⁾	Edelstahl 316L	Edelstahl 316L	Silikonöl	*
33 ⁽²⁾	Alloy C-276	Alloy C-276	Silikonöl	*
Erweitert	-	1		
2B ⁽²⁾	Edelstahl 316L	Edelstahl 316L	Inertfüllung	
Code	Prozessanschluss			
Standard	•			Standard
A	1/2-14 NPT Innengewinde			*
B ⁽³⁾	DIN 16288 G ½ Außengev	winde		*
D ⁽³⁾⁽⁴⁾	M20 \times 1,5 Außengewinde			
Erweitert	weitert			
C ⁽³⁾⁽⁴⁾	RC ½ Innengewinde			
Code	Leitungseinführung			
Standard	·			Standard
1	1⁄2-14 NPT			*
2 ⁽³⁾	M20 × 1,5			*

Tabelle 2. Bestellinformationen für Druckmessumformer Rosemount 2088

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Die erweiterten Angebote werden nach Bestellung hergestellt und sind mit längeren Lieferzeiten verbunden.

Code	Leitungseinführung	
Erweitert		
4 ⁽³⁾	G 1⁄2	

Optionen (mit der jeweiligen Modellnummer angeben)

Anbau an	einen Druckmittler	
Standard		Standard
S1 ⁽⁵⁾⁽⁶⁾	Anbau an einen Rosemount Druckmittler 1199	*
Anzeige u	nd schnittstelle	
Standard		Standard
M4	Digitalanzeiger mit lokaler Bedienoberfläche	*
M5	Digitalanzeiger, für Messeinheiten konfiguriert	*
Konfigura	tionstasten	
Standard		Standard
D4	Analoger Nullpunkt und Messbereich	*
DZ	Digitaler Nullpunktabgleich	*
Montagel	nalterungen	
Standard		Standard
B4	Edelstahl-Montagehalter mit Edelstahlschrauben	*
Produkt-z	ulassungen	
Standard		Standard
C6	CSA Ex-Schutz, Eigensicherheit und keine Funken erzeugend	*
E2	INMETRO Druckfeste Kapselung	*
E3	China: Druckfeste Kapselung	*
E4 ⁽³⁾⁽⁷⁾	TIIS: Druckfeste Kapselung	*
E5	FM Ex-Schutz und Staub-Ex-Schutz	*
E7	IECEx: Druckfeste Kapselung	*
ED	ATEX: Druckfeste Kapselung	*
11 ⁽³⁾	ATEX: Eigensicherheit	*
12	INMETRO: Eigensicherheit	*
13	China: Eigensicherheit	*
15	FM Eigensicherheit, Division 2	*
17	IECEx Eigensicherheit	*
K1	ATEX: Druckfeste Kapselung, Eigensicherheit, Typ n, Staub	*
K2	INMETRO: Druckfeste Kapselung, Eigensicherheit	*
K5	FM Ex-Schutz. Staub-Ex-Schutz und Eigensicherheit, Division 2	*
K6 ⁽³⁾	ATEX und CSA Ex-Schutz, Staub-Ex-Schutz, Eigensicherheit, Division 2	*
K7	IECEx Druckfeste Kapselung, Eigensicherheit, Typ n, Staub	*
KB	FM und CSA Ex-Schutz, Staub-Ex-Schutz und Eigensicherheit, Division 2	*

Tabelle 2. Bestellinformationen für Druckmessumformer Rosemount 2088

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Die erweiterten Angebote werden nach Bestellung hergestellt und sind mit längeren Lieferzeiten verbunden.

Produkt-	zulassungen	
Standard		Standard
KH ⁽³⁾	FM Zulassungen und ATEX Ex-Schutz und Eigensicherheit	*
N1 ⁽³⁾	ATEX: Typ n	*
N3	China Typ n	*
N7	IECEx: Typ n	*
ND ⁽³⁾	ATEX: Staub	*
NK	IECEx Staub	*
Marine-z	lassungen	
Standard		Standard
SBS	ABS Zulassung (American Bureau of Shipping)	*
SBV	BV Zulassung (Bureau Veritas)	*
SDN	DNV Zulassung (Det Norske Veritas)	*
SLL	LR Zulassung (Lloyds Register)	*
Druckprü	fung	
Erweiter		
P1	Druckprobe	
Anschlus	sklemmenblöcke	
Standard		Standard
T1	Überspannungsschutz	*
Spezielle	reinigung	
Erweiter		
P2 Erhöhte Sauberkeitsstufe		
Kalibrierz	ertifikat	
Standard		Standard
Q4	Kalibrierzertifikat	*
Qualitäts	kalibrierzertifikat und Werkstoffzeugnis	
Standard		Standard
Q8	Werkstoffzeugnis gemäß EN 10204 3.1	*
Q15	Werksbescheinigung gemäß NACE MR0175/ISO 15156 für mediumberührte Werkstoffe	*
Q25	Werksbescheinigung gemäß NACE MR0103 für mediumberührte Werkstoffe	*
Alarmwe	rte	
Standard		Standard
C4 ⁽³⁾	Alarm- und Sättigungswerte nach NAMUR, Hochalarm	*
CN ⁽³⁾	Alarm- und Sättigungswerte nach NAMUR, Niedrigalarm	*
C5 ⁽⁸⁾⁽⁹⁾	Anwenderspezifische Alarm- und Sättigungswerte, Hochalarm (C9 und Konfigurationsdatenblatt erforderlich)	*
C7 ⁽⁸⁾⁽⁹⁾	Anwenderspezifische Alarm- und Sättigungswerte, Niedrigalarm (C9 und Konfigurationsdatenblatt erforderlich)	*
C8 ⁽⁹⁾	Niedrigalarm (Standard Rosemount Alarm- und Sättigungswerte)	*

Tabelle 2. Bestellinformationen für Druckmessumformer Rosemount 2088

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Die erweiterten Angebote werden nach Bestellung hergestellt und sind mit längeren Lieferzeiten verbunden.

Konfiguration		
Standard		Standard
С9	Software-Konfiguration	*
anbau an	einen Ventilblock	
Standard		Standard
S5 ⁽⁵⁾⁽⁶⁾	Anbau an einen integrierten Rosemount Ventilblock 306	*
Kalibrierg	enauigkeit	
Standard		Standard
P8 ⁽¹⁰⁾	0,065 % Genauigkeit, Messspannenverhältnis 10:1	*
Wasser-zu	lassung	
Standard		Standard
DW ⁽¹¹⁾	NSF Trinkwasser-Zulassung	*
Oberfläch	engüte	
Standard		Standard
Q16	Prüfprotokoll Oberflächengüte für Hygiene-Druckmittler	*
Toolkit fü	Leistungsdatenberichte des Gesamtsystems	
Standard		Standard
QZ	Berechnungsreport für die Leistungsmerkmale des Druckmittler-Systems	*
konfigura	tion der HART Version	
Standard		Standard
HR 5 ⁽⁹⁾⁽¹²⁾	Konfiguriert für HART Version 5	*
HR7 ⁽⁹⁾⁽¹³⁾	Konfiguriert für HART Version 7	*
Typische M	odellnummer: 2088 G 2 S 22 A 1 B4 M5	

(1) HART Version 5 ist der Standardausgang für HART. Der Rosemount 2088 mit wählbarer HART Version kann werkseitig oder im Feld auf HART Version 7 konfiguriert werden. Optionscode HR7 hinzufügen, um die HART Version 7 werkskonfiguriert zu bestellen.

(2) Die Werkstoffe entsprechen den Empfehlungen gemäß NACE MR0175/ISO 15156 für Sour Oil Field Production Environments. Die Umgebungsgrenzen beziehen sich auf bestimmte Werkstoffe. Weitere Informationen finden Sie in den aktuellen Fassungen der Normen. Die angegebenen Werkstoffe entsprechen auch NACE MR0103 für Sour refining environments.

(3) Nicht lieferbar mit Messumformer-Ausgangscode N für Niedrigspannung.

(4) Nicht lieferbar mit Alloy C-276, Werkstoffcode 33.

(5) Prozessanschluss Code A mit ¹/2- 14 NPT Innengewinde verwenden.

(6) "Anbau an" Positionen werden separat spezifiziert und erfordern eine komplette Modellnummer.

(7) Nur lieferbar mit Leitungseinführung Code 4

(8) Nur lieferbar mit 4-20 mA HART Ausgang (Ausgangscode A).

(9) Konfigurationstasten (Optionscode D4 oder D2) oder Bedieninterface (Optionscode M4) auswählen, wenn lokale Konfigurationstasten erforderlich sind.

(10) Erfordert Messumformer-Ausgangscode S mit Werkstoffcode 22 oder 23.

(11) Erfordert Werkstoffcode 22 mit Prozessanschluss Code A.

(12) Konfiguriert den HART Ausgang auf HART Version 5. Das Gerät kann vor Ort auf HART Version 7 konfiguriert werden (sofern erforderlich).

(13) Konfiguriert den HART Ausgang auf HART Version 7. Das Gerät kann vor Ort auf HART Version 5 konfiguriert werden (sofern erforderlich).

A.6 Optionen

Standardkonfiguration

Sofern nicht anders angegeben, wird der Messumformer wie folgt geliefert:

Einheiten	mbar/bar (alle Messbereiche)
4 mA (1 VDC)	0 (Messeinheiten)
20 mA (5 VDC)	Messbereichsende
Ausgang	Linear
Flansch Typ	Entsprechend Modellcode
Flanschwerkstoff	Entsprechend Modellcode
O-Ring Werkstoff	Entsprechend Modellcode
Entlüftungsventil	Entsprechend Modellcode
Digitalanzeiger	Montiert oder ohne
Alarm	Hoch
Software-Kennzeichnung	(ohne)

Anwenderkonfiguration

Bei Bestellung von Optionscode C9 können folgende Parameter zusätzlich zur Standardkonfiguration gewählt werden.

- Informationen über den Ausgang
- Informationen über den Messumformer
- Konfiguration des Digitalanzeigers
- Wählbare Hardware-Informationen
- Signalauswahl

Siehe "Rosemount 2088 Konfigurationsdatenblatt" (Dok.-Nr. 00806-0100-4690).

Kennzeichnung (3 Optionen wählbar)

- Standard-Edelstahlschild permanent am Messumformer befestigt. Auf einem am Messumformer aufgenietetem Typenschild eingraviert/eingeschlagen, < max. 84 Zeichen.
- Kennzeichnung kann auf Wunsch mit Draht am Typenschild angebracht werden, max.
 85 Zeichen.
- Bei HART Protokollen kann die Kennzeichnung im Speicher des Messumformers abgelegt werden, max. acht Zeichen. Die Software-Kennzeichnung bleibt leer, sofern nicht anders angegeben.
 - -- HART Version 5: 8 Zeichen
 - -- HART Version 7: 32 Zeichen

Optionale integrierte Ventilblöcke Rosemount 306

Vormontiert an Messumformer 2088. Weitere Informationen sind im Produktdatenblatt (Dok.-Nr. 00813-0105-4733) des Rosemount 306 zu finden.

Weitere Druckmittler

Weitere Informationen sind im Produktdatenblatt (Dok.-Nr. 00813-0105-4016 oder 00813-0201-4016) zu finden.

Informationen über den Ausgang

Die Messbereichsendwerte des Ausgangs müssen die gleiche Einheit haben. Mögliche Messeinheiten:

Druckeinheiten ⁽¹⁾			
Torr	psf ⁽¹⁾	cmH ₂ O bei 4°C ⁽¹⁾	
atm	inH ₂ O	mH ₂ O bei 4°C ⁽¹⁾	
Pa	inH ₂ O bei 4°C ⁽¹⁾	inHg	
kPa	inH ₂ O bei 60°F ⁽¹⁾	mmHg	
MPa ⁽¹⁾	ftH ₂ O	cmHG bei 0°C ⁽¹⁾	
hPa ⁽¹⁾	ftH ₂ O bei 4°C ⁽¹⁾	mHG bei 0°C ⁽¹⁾	
mbar	ftH ₂ O bei 60°F ⁽¹⁾	g/cm ²	
bar	mmH ₂ O	kg/m ²⁽¹⁾	
psi	mmH ₂ O bei 4°C ⁽¹⁾	kg/cm ²	

 Nur vor Ort konfigurierbar, nicht f
ür werkseitige Kalibrierung oder anwenderspezifische Konfiguration erhältlich (Optionscode C9 "Software Konfiguration").

Anzeiger- und Bedieninterface-Optionen

- M4 Digitalanzeiger mit Bedieninterface
- Erhältlich für 4-20 mA HART, 4-20 mA HART Niedrigspannung
- M5 Digitalanzeiger
- Zweizeilige, fünfstellige LCD-Anzeige für 4-20 mA HART
- Zweizeilige, fünfstellige LCD-Anzeige für 1-5 VDC HART Niedrigspannung
- Direkte digitale Anzeige des Messwertes f
 ür h
 öhere Messgenauigkeit
- Anzeige von kundendefinierten Durchfluss-, Füllstands-, Volumen- oder Druckwerten
- Anzeige von Diagnosemeldungen für die Störungsanalyse und -beseitigung vor Ort
- Um 90 Grad drehbar für gute Ablesbarkeit

Konfigurationstasten

Rosemount 2088 jetzt mit Optionen für interne und externe Konfigurationstasten erhältlich.

- Bei Auswahl von Option D4 werden externe Konfigurationstasten f
 ür analogen Nullpunkt und Messspanne integriert.
- Bei Auswahl von Option DZ wird eine externe Konfigurationstaste f
 ür digitalen Abgleich integriert.
- Bei Auswahl von Option M4 (Bedieninterface) werden interne und externe Konfigurationstasten hinzugefügt.

Bestimmte Tasten können auch wie nachfolgend beschrieben kombiniert werden:

Tastenkonfiguration		
Optionscode	Intern	Extern
DZ	k. A.	Digitaler Abgleich
D4	k. A.	Analoger Nullpunkt und Messbereich
M4	LOI	LOI
M4 + DZ	LOI	Digitaler Abgleich
M4 + D4	LOI	Analoger Nullpunkt und Messbereich

Montagehalterung als Optionen für Rosemount 2088

B4 Montagehalter für 50 mm (2 in.) Rohr- oder Wandmontage

- Zur Befestigung an 50 mm (2 in.) Rohr oder für Wandmontage
- Alle Teile/Schrauben aus Edelstahl

Anhang B Produkt-Zulassungen

Zugelassene Herstellungsstandorte	. Seite 91
Informationen zu EU-Richtlinien	. Seite 91
Ex-Zulassungen	. Seite 91
Zulassungs-Zeichnungen	. Seite 99

B.1 Zugelassene Herstellungsstandorte

Rosemount Inc. – Chanhassen, Minnesota USA

Emerson Process Manufacturing GmbH & Co. OHG – Weßling, Deutschland

Emerson Process Management Asia Pacific Private Limited – Singapur

Beijing Rosemount Far East Instrument Co., LTD - Beijing, China

B.2 Informationen zu EU-Richtlinien

Die EU-Konformitätserklärung für alle auf dieses Produkt zutreffenden EU-Richtlinien ist auf der Rosemount Website unter www.rosemount.com zu finden. Diese Dokumente erhalten Sie auch durch Emerson Process Management.

ATEX-Richtlinie (94/9/EG)

Die Produkte von Emerson Process Management erfüllen die Anforderungen der ATEX-Richtlinie.

Europäische Druckgeräterichtlinie (PED) (97/23/EG)

Druckmessumformer 2088/2090 - Gemäß "Guter Ingenieurspraxis"

Elektromagnetische Verträglichkeit (EMV) (2004/108/EG)

EN 61326-1:2006

B.3 Ex-Zulassungen

Nordamerikanische Zulassungen

FM (Factory Mutual)

Ex-Schutz und Staub-Ex-Schutz
 Zulassungs-Nr.: 1V2A8.AE
 Angewandte Normen: FM Class 3600 – 1998, FM Class 3615 – 1989, FM Class 3810 – 1989
 Kennzeichnungen: Ex-Schutz für Class I, Division 1, Groups B, C und D. Staub Ex-Schutz für Class II/III, Division 1, Groups E, F und G.
 Temperaturcode: T5 (T_a = -40 °C bis +85 °C), werkseitig abgedichtet, Gehäuseschutzart 4X.

15	Eigensicherheit und keine Funken erzeugend
	Zulassungs-Nr.: 0V9A7.AX
	Angewandte Normen: FM Class 3600 – 1998, FM Class 3610 – 2010, FM Class 3811 – 2004,
	FM Class 3810 – 1989.
	Kennzeichnungen: Eigensicher für Class I, Division 1, Groups A, B, C, D; Class II, Division 1,
	Groups E, F und G; und Class III, Division 1
	Temperaturcode: T4 (T _a = 70 °C) gemäß Rosemount Zeichnung 02088-1018.
	Keine Funken erzeugend für Class I, Division 2, Groups A, B, C und D.
	Temperaturcode: T4 (T _a = 85 °C), Gehäuseschutzart 4X.
	Eingangsparameter siehe Zulassungs-Zeichnung 02088-1018.

Canadian Standards Association (CSA)

Alle nach CSA zugelassenen Messumformer sind gemäß ANSI/ISA 12.27.01-2003 zertifiziert.

C6 Ex-Schutz, Eigensicherheit, Staub-Ex-Schutz und Class I, Division 2 Zulassungs-Nr.: 1015441 Angewandte Normen: CAN/CSA Std. C22.2 Nr. 0 – M91, CSA Std. C22.2 Nr. 25 – 1966, CSA Std. C22.2 Nr. 30 – M1986, CAN/CSA Std. C22.2 Nr. 94 – M91, CSA Std. C22.2 Nr. 142 – M1987, CAN/CSA Std. C22.2 Nr. 157-92, CSA Std. C22.2 Nr. 213 – M1987, ANSI/ISA 12.27.01-2003. Kennzeichnungen: Ex-Schutz für Class I, Division 1, Groups B, C und D. Staub-Ex-Schutz für Class II, Division 1, Groups E, F, G, Class III. Geeignet für Class I, Division 2, Groups A, B, C und D. Eigensicher für Class I, Division 1, Groups A, B, C und D.

Temperaturcode: T3C. Gehäuseschutzart 4X. Werkseitig abgedichtet. Einzeldichtung. Siehe Zulassungs-Zeichnung 02088-1024.

Europäische Zulassungen

Spezielle Voraussetzungen zur sicheren Verwendung (X):

- 1. Dieses Gerät verfügt über eine dünnwandige Membran. Bei Installation, Betrieb und Wartung sind die Umgebungsbedingungen zu berücksichtigen, denen die Membran ausgesetzt ist. Die Wartungs- und Installationsanweisungen des Herstellers sind genau einzuhalten, um so die Sicherheit während der erwarteten Lebensdauer sicherzustellen.
- 2. Informationen über die Abmessungen druckfest gekapselter Anschlüsse sind auf Anfrage vom Hersteller erhältlich.
- I1 Eigensicher nach ATEX

Zulassungs-Nr.: BAS00ATEX1166X Angewandte Normen: EN60079-0:2012, EN60079-11:2012 Kennzeichnungen: (a) II 1G Ex ia IIC T5 Ga (-55 °C \leq T_a \leq 40 °C) Ex ia IIC T4 Ga (-55 °C \leq T_a \leq 70 °C) c ϵ 1180

Tabelle B-1. Eingangsparameter

U _i = 30 V	
l _i = 200 mA	
P _i = 0,9 W	
C _i = 0,012 μF	

Spezielle Voraussetzung zur sicheren Verwendung (X):

- 1. Bei Verwendung des optionalen Anschlussklemmenblocks mit Überspannungsschutz hält der Messumformer dem 500-V-Isolationstest gemäß Richtlinie EN 60079-11 nicht stand.

Spezielle Voraussetzung zur sicheren Verwendung (X):

- 1. Bei Verwendung des optionalen Anschlussklemmenblocks mit Überspannungsschutz hält der Messumformer dem 500-V-Isolationstest gemäß Richtlinie EN 60079-15 nicht stand.
- ND ATEX Staub

Spezielle Voraussetzungen zur sicheren Verwendung (X):

- 1. Der Anwender muss sicherstellen, dass die Nennwerte für Spannung und Strom (36 VDC, 24 mA) nicht überschritten werden. Alle Verbindungen zu anderen Apparaten oder Zusatzgeräten sollten durch diese Spannung und diesen Strom versorgt werden, um einem Stromkreis der Kategorie "ib" nach der EN60079-31 zu entsprechen.
- 2. Die verwendeten Leitungseinführungen müssen mindestens die Schutzart IP66 aufweisen.
- 3. Unbenutzte Leitungseinführungen müssen mit geeigneten Blindstopfen verschlossen werden, die mindestens den Anforderungen gemäß IP66 entsprechen.
- 4. Die Leitungsdurchführungen sowie die Blindverschraubungen müssen entsprechend der Umgebungsbedingungen ausgewählt werden und in der Lage sein, einer Belastung entsprechend des 7J- Testes zu genügen.
- 5. Das Sensormodul der Messumformer 2088/2090 muss sicher verschraubt sein, damit der Gehäuseschutz gewährleistet bleibt.

IECEx-Zulassungen

- E7 IECEx Druckfeste Kapselung Zulassungs-Nr.: IECEx KEM 06.0021X Angewandte Normen: IEC60079-0:2004, IEC60079-1:2003, IEC60079-26:2004 Kennzeichnungen: Ex d IIC T4 (-20 °C \leq T_a \leq 80°C) Ex d IIC T6 (-20 °C \leq T_a \leq 40 °C)
- I7Eigensicher nach IECEx
Zulassungs-Nr.: IECEx BAS 12.0071X
Angewandte Normen: IEC60079-0:2011, IEC60079-11:2011
Kennzeichnungen: Ex ia IIC T5 Ga(-55 °C $\leq T_a \leq +40$ °C)
Ex ia IIC T4 Ga (-55 °C $\leq T_a \leq +70$ °C)

Tabelle B-2. Eingangsparameter

U _i = 30 V	
l _i = 200 mA	
P _i = 0,9 W	
C _i = 0,012 μF	

Spezielle Voraussetzung zur sicheren Verwendung (X):

- 1. Bei Verwendung des optionalen Anschlussklemmenblocks mit Überspannungsschutz hält der Messumformer dem 500-V-Isolationstest gemäß Richtlinie EN 60079-11 nicht stand. Dies muss bei der Installation des Geräts berücksichtigt werden.
- 2. Das Gehäuse kann aus einer Aluminiumlegierung hergestellt sein und über eine Schutzlackierung aus Polyurethan verfügen. Jedoch ist Vorsicht geboten, um es vor Schlag oder Abrasion zu schützen, wenn dieses in einer Umgebung der Zone 0 platziert ist.
- N7 IECEx Keine Funken erzeugend/Typ n Zulassungs-Nr.: IECEx BAS 12.0072X Angewandte Normen: IEC60079-0:2011, IEC60079-15: 2010 Kennzeichnungen: Ex nA IIC T5 Gc (-40 °C ≤ T_a ≤ +70 °C) U_i = max. 50 VDC

Spezielle Voraussetzung zur sicheren Verwendung (X):

- 1. Bei Verwendung des optionalen Anschlussklemmenblocks mit Überspannungsschutz hält der 2088 dem 500-V-Isolationstest nicht stand. Dies muss bei der Installation berücksichtigt werden.
- NK IECEx Staub

Zulassungs-Nr.: IECEx BAS12.0073X Angewandte Normen: IEC60079-0:2011, IEC60079-31:2008 Kennzeichnungen: Ex t IIIC T50 °C T 500 60 °C Da V_{max} = 36 VDC; I_i = 24 mA

Spezielle Voraussetzungen zur sicheren Verwendung (X):

- 1. Die verwendeten Leitungseinführungen müssen mindestens die Schutzart IP66 aufweisen.
- 2. Unbenutzte Leitungseinführungen müssen mit geeigneten Blindstopfen verschlossen werden, die mindestens den Anforderungen gemäß IP66 entsprechen.
- 3. Kabelverschraubungen und Blindstopfen müssen für die Umgebungsbedingungen des Geräts geeignet sein und einer 7J Stoßprüfung standhalten.

Japanische Zulassungen

E4 TIIS Druckfeste Kapselung Ex d IIC T6 (T_a = 85 °C)

Zertifikat	Beschreibung
TC15874	2088 mit mediumberührten Teilen aus Alloy C-276 (mit Anzeiger)
TC15873	2088 mit mediumberührten Teilen aus Edelstahl (mit Anzeiger)
TC15872	2088 mit mediumberührten Teilen aus Alloy C-276 (ohne Anzeiger)
TC15871	2088 mit mediumberührten Teilen aus Edelstahl (ohne Anzeiger)

Brasilianische Zulassungen

I2INMETRO Eigensicherheit
Zulassungs-Nr.: UL-BR 13.0246X
Kennzeichnungen: Ex ia IIC T5/T4 Ga
T5 (-55 °C \leq Ta \leq +40 °C); T4 (-55 °C \leq Ta \leq +70 °C)

Spezielle Voraussetzungen zur sicheren Verwendung (X):

- 1. Bei Verwendung des optionalen Anschlussklemmenblocks mit Überspannungsschutz hält der 2088 dem 500-V-Isolationstest nicht stand. Dies muss bei der Installation berücksichtigt werden.
- 2. Das Gehäuse kann aus einer Aluminiumlegierung hergestellt sein und über eine Schutzlackierung aus Polyurethan verfügen. Jedoch ist Vorsicht geboten, um es vor Schlag oder Abrasion zu schützen, wenn dieses in einer Umgebung der Zone 0 platziert ist.
- E2 INMETRO Druckfeste Kapselung (nur Serie 2088) Zulassungs-Nr.: CEPEL 97.0076 Kennzeichnungen: Ex d IIC T6/T5 Gb T6 (-20 °C \leq T_a \leq +40 °C); T5 (-20 °C \leq T_a \leq +60 °C)

Chinesische Zulassungen

 I3
 China Eigensicherheit

 Zulassungs-Nr.: GYJ111063X (Serie 2088); GYJ111065X (Serie 2090)

 Angewandte Normen: GB3836.1-2000, GB3836.4-2000

 Kennzeichnungen: Ex ia IIC T4/T5

 T4 (-55 °C ≤ $T_a ≤ +70$ °C);T5 (-55 °C ≤ $T_a ≤ +40$ °C)

Tabelle B-3. Eingangsparameter

U _i = 30 V	
l _i = 200 mA	
P _i = 0,9 W	
C _i = 0,012 μF	_

Spezielle Voraussetzungen zur sicheren Verwendung (X):

- 1. Dieser Messumformer hält dem Isolationstest mit 500 Veff gemäß Richtlinie GB3836.4-2000, Absatz 6.4.12, nicht stand.
- 2. Umgebungstemperatur:

Temperaturcode	Umgebungstemperatur
Т5	-55 °C ≤ T _a ≤ +40 °C
T4	-55 °C ≤ T _a ≤ +70 °C

3. Parameter Eigensicherheit:

Max.	Max.	Max. eingangsleistung: P _i (W)	Max. interne parameter:	
eingangsspannung: U _i (V)	eingangsstrom: I _i (mA)		C _i (nF)	Լ_i (µ H)
30	200	0,9	12	0

- 4. Das Produkt sollte mit einem linear angeschlossenen Gerät mit Ex-Zulassung verwendet werden, um ein explosionsgeschütztes System einzurichten, das in einer Umgebung mit explosiven Gasen eingesetzt werden kann. Verdrahtung und Anschlussklemmen müssen der Betriebsanleitung des Produkts und angeschlossenen Geräts entsprechen.
- 5. Die Kabel zwischen dem Produkt und dem angeschlossenen Gerät sollten abgeschirmt sein (das Kabel muss eine isolierte Abschirmung haben). Die Abschirmung muss sicher in einem nicht explosionsgefährdeten Bereich geerdet sein.
- 6. Der Endanwender darf keine internen Komponenten ändern, sondern sollte Probleme in Zusammenarbeit mit dem Hersteller beheben, um eine Beschädigung des Produktes zu vermeiden.
- 7. Bei Installation, Wartung und Betrieb des Produkts sind die folgenden Normen einzuhalten:

GB3836.13-1997 "Elektrische Geräte in Atmosphären mit explosiven Gasen, Teil 13: Repair and overhaul for apparatus used in explosive gas atmospheres"

GB3836.15-2000 "Elektrische Geräte in Atmosphären mit explosiven Gasen, Teil 15: Electrical installations in hazardous area (other than mines)"

GB3836.16-2006 "Elektrische Geräte in Atmosphären mit explosiven Gasen, Teil 16: Inspection and maintenance of electrical installation (other than mines)"

GB50257-1996 "Code for construction and acceptance of electric device for explosion atmospheres and fire hazard electrical equipment installation engineering"

E3 China Druckfeste Kapselung Zulassungs-Nr.: GYJ111062 (Serie 2088); GYJ111064 (Serie 2090) Angewandte Normen: GB3836.1-2000, GB3836.2-2000 Kennzeichnungen: Ex d IIC T4/T6 T4 (-20 °C $\leq T_a \leq +40$ °C); T6 (-20 °C $\leq T_a \leq +80$ °C) Spezielle Voraussetzungen zur sicheren Verwendung (X):

1. Umgebungstemperaturbereich:

Temperaturcode	Umgebungstemperatur	
Т6	$-20 \degree C \le T_a \le +80 \degree C$	
T4	$-20 \degree C \le T_a \le +40 \degree C$	

- 2. Der Erdungsanschluss im Gehäuse muss auf zuverlässige Weise verbunden werden.
- 3. Bei der Installation in Ex-Bereichen müssen Kabelverschraubungen, Leitungseinführungen und Blindstopfen verwendet werden, die durch staatliche Prüfstellen gemäß Schutzart Ex d IIC zugelassen sind.
- 4. Bei Installation, Betrieb und Wartung in Atmosphären mit explosiven Gasen den Warnhinweis "Im spannungsführenden Zustand nicht öffnen" beachten.
- 5. Bei der Installation dürfen keine schädlichen Mixturen am druckfest gekapselten Gehäuse vorhanden sein.
- 6. Der Endanwender darf keine internen Komponenten ändern, sondern sollte Probleme in Zusammenarbeit mit dem Hersteller beheben, um eine Beschädigung des Produktes zu vermeiden.
- 7. Wartungsarbeiten müssen außerhalb des Ex-Bereiches durchgeführt werden.
- 8. Bei Installation, Wartung und Betrieb des Produkts sind die Betriebsanleitung sowie die folgenden Normen einzuhalten:

GB3836.13-1997 "Elektrische Geräte in Atmosphären mit explosiven Gasen, Teil 13: Repair and overhaul for apparatus used in explosive gas atmospheres"

GB3836.15-2000 "Elektrische Geräte in Atmosphären mit explosiven Gasen, Teil 15: Electrical installations in hazardous area (other than mines)"

GB3836.16-2006 "Elektrische Geräte in Atmosphären mit explosiven Gasen, Teil 16: Inspection and maintenance of electrical installation (other than mines)"

GB50257-1996 "Code for construction and acceptance of electric device for explosion atmospheres and fire hazard electrical equipment installation engineering"

 N3 China Typ n, keine Funken erzeugend Zulassungs-Nr.: GYJ101126X (Serie 2088) Angewandte Normen: GB3836.1-2000, GB3836. 8-2000 Kennzeichnungen: Ex nA nL IIC T5 (-40 °C ≤ T_a ≤ +70 °C)

Spezielle Voraussetzungen zur sicheren Verwendung (X):

- 1. Dieser Messumformer hält dem Isolationstest mit 500 Veff gemäß Richtlinie GB3836.4-2000, Absatz 6.4.12, nicht stand.
- 2. Umgebungstemperatur: -40 °C \leq T_a \leq 70 °C.
- 3. Max. Eingangsspannung: 50 V.

- 4. An den externen Anschlüssen und Leitungseinführungen sollten Metallkabelverschraubungen bzw. Blindstopfen angebracht werden, die gemäß NEPSI mit der Schutzart Ex e oder Ex n zertifiziert sind.
- 5. Wartungsarbeiten müssen außerhalb des Ex-Bereiches durchgeführt werden.
- 6. Der Endanwender darf keine internen Komponenten ändern, sondern sollte Probleme in Zusammenarbeit mit dem Hersteller beheben, um eine Beschädigung des Produktes zu vermeiden.
- 7. Bei Installation, Wartung und Betrieb des Produkts sind die folgenden Normen einzuhalten:

GB3836.13-1997 "Elektrische Geräte in Atmosphären mit explosiven Gasen, Teil 13: Repair and overhaul for apparatus used in explosive gas atmospheres"

GB3836.15-2000 "Elektrische Geräte in Atmosphären mit explosiven Gasen, Teil 15: Electrical installations in hazardous area (other than mines)"

GB3836.16-2006 "Elektrische Geräte in Atmosphären mit explosiven Gasen, Teil 16: Inspection and maintenance of electrical installation (other than mines)"

GB50257-1996 "Code for construction and acceptance of electric device for explosion atmospheres and fire hazard electrical equipment installation engineering".

Zulassungskombinationen

Bei einer optionalen Zulassung wird ein Edelstahl-Zulassungsschild geliefert. Ist ein Gerät installiert, das mit mehreren Zulassungen gekennzeichnet ist, darf es nicht erneut mit anderen Zulassungen installiert werden. Die permanente Beschriftung des Zulassungsschilds dient der Unterscheidung des installierten Zulassungstyps von den nicht verwendeten Zulassungen.

- **K1** Kombination von I1, N1, ED und ND
- **K2** Kombination von I2 und E2
- **K5** Kombination von E5 und I5
- **K6** Kombination von C6, I1 und ED
- K7 Kombination von I7, N7, E7 und NK
- **KB** Kombination von K5 und C6
- KH Kombination von K5, ED und I1

B.4 Zulassungs-Zeichnungen

B.4.1 Factory Mutual 02088-1018

	AA	RTC1002247	_
	ENTITY CONCEPT APPROVALS		
THE ENTITY CONCEPT A TO ASSOCIATED APPARATL THE APPROVED VALUES OF SHORT CIRCUIT CURRENT UVXXUITAGE ENTITE A SAFE INPUT FORMER (PMAS APPROVED MAXIMUM ALLOW APPRATUS MUST BE GREA CAPACITANCE AND THE UN SAFE APPARATUS MUST BE GREA CAPACITANCE AND THE UN SAFE APPARATUS. AND THE CAPACITANCE AND THE UN SAFE APPARATUS. AND THE CAPACITANCE AND THE SAFE APPARATUS THE APPARATUS AND THE SAFE APPARATUS THE APPARATUS AND THE SAFE APPARATUS APPARATUS AND THE SAFE APPARATUS APPARATUS AND THE SAFE APPARATUS APPAR	LLOWS INTERCONNECTION OF INTRI SNOT SPECIFICALLY EXAMINED IN MAXIMUM OPEN CIRCUIT VOLTAGE (ISC OR II) AND MAXIMUM OUTPUT SSOCIATED XPPARATUS MUSSTEELS SSOCIATED XPPARATUS MUSSTEELS IOF THE INTRINSICALLY SAFE APP MABLE CONNECTED CAPACITANCE (CA TER THAN THE SUM OF THE INTERCI PROTECTED INTERNAL CAPACITANCE E APPROVED MAXIMUM ALLOWABLE (C UNE NUMP BE OFAITET HAN THE SUM TARATUS.	SICALLY SAFE APPARATUS COMBINATION AS A SYSTE VOC OF VT) AND MAXIMU POWER (VOC X ISC/4). (SS THAN OR EDMAL TO THE SS THAN OR EDMAL TO THE PARATUS. IN ADDITION) OF THE ASSOCIATED NNECTING CABLE (C1) OF THE INTERCONNECTI NNECT IN ENDUCTANCE (L6 MOF THE INTERCONNECTIN NCE (L1) OF THE	M. AXIMUM HE HE IG
NC	TE: ENTITY PARAMETERS LISTED (APPLY ONLY TO ASSOCIATE	D
MODEL 20	88 / 2090	•	
CLASS I. DIV. 1. C	ROUPS A AND B		1
VMAX = 30V V	T OR VOC IS LESS THAN OR EQUAL T OR ISC IS LESS THAN OR FOU	TO 30V AL TO 165MA	-
RMAX = 1 WATT (VC	DC X ISC/4) OR (VT X IT/4) IS LE	ESS THAN OR EQUAL TO 1	WATT
$C_{I} = 0.012\mu F$ (CA IS GREATER THAN 0.012 F.		-
	A IS GREATER THAN 20 µ H.		J
Iway - 145MA I	T OR ISC IS LESS THAN OR EQU	AL TO 145MA	1
L _I = 1.448 MH L	A IS GREATER THAN 1.448 MH.		j
CLASS I. DIV. 1. C <u>WMAX</u> = 30V V V <u>MAX</u> = 225MA I <u>PMAX</u> = 1 WAIT (VC C 1 = 0.012μ F (L1 = 20 μ H L FOR T1 0PT10N+ [L1 = -1.48 MH L	TOR VOC IS LESS THAN OR EQUAL TOR VOC IS LESS THAN OR EQUAL TOR ISC IS LESS THAN OR EQU C X ISC/4) OR (VT X IT/4) IS LE A IS GREATER THAN 0.012 A F. A IS GREATER THAN 20 H.	TO 30V AL TO 225MA SS THAN OR EQUAL TO 1	WATT
			1
Мү	es Leo Millor	02088-1018 57	

B.4.2 Canadian Standards Association (CSA) 02088-1024

Г

	AA	RTC1002227
WARNING - EXPLOSION H MAY IMPAIR SUITABILITY AVERTISSEMENT - RISOL PEUT RENDRE CE MATEI DE CLASSE I, DIVISION 2	HAZARD - SUBSTITUTION OF COMPO FOR CLASS I, DIVISION 2. JE D'EXPLOSION - LA SUBSTITUTION RIEL INACCEPTABLE POUR LES EMP	NENTS N DE COMPOSANTS LACEMENTS
DEVICE	PARAMETERS	APPROVED FOR CLASS I, DIV.1
CSA APPROVED SAFETY BARRIER	30 V OR LESS 330 OHMS OR MORE 28 V OR LESS 300 OHMS OR MORE 25 V OR LESS 200 OHMS OR MORE 22 V OR LESS 180 OHMS OR MORE	GROUPS A, B, C, I
FOXBORO CONVERTER 2A1-12V-CGB, 2A1-13V-CC 2AS-131-CGB, 3A2-12D-C 3A2-13D-CGB, 3AD-131-C 3A4-12D-CGB, 2AS-121-C 3F4-12DA	38, GB, GB, GB,	GROUPS B, C, D
CSA APPROVED SAFETY BARRIER	30 V OR LESS 150 OHMS OR MORE	GROUPS C, D
SAND	n Manson	02088-1024

Anhang C

Handterminal-Menüstrukturen und -Funktionstastenfolgen

Handterminal-Menüstrukturen	Seite 109
Handterminal-Funktionstasten	Seite 118

C.1 Handterminal-Menüstrukturen

Handterminal-Menüstrukturen und

C.2 Handterminal-Funktionstasten

- Ein Häkchen (✓) kennzeichnet die Basis-Konfigurationsparameter. Diese Parameter sollten bei der Konfiguration und beim Einschalten geprüft werden.
- Eine (7) kennzeichnet die Verfügbarkeit nur im Modus der HART Version 7.

Tabelle C-1. Geräteversion 9 und 10 (HART7), DD-Version 1 Funktionstastenfolge

		Funktions	Funktionstastenfolge	
	Funktion	HART 7	HART 5	
\checkmark	Alarm- und Sättigungswerte	2, 2, 2, 5	2, 2, 2, 5	
\checkmark	Dämpfung	2, 2, 1, 1, 5	2, 2, 1, 1, 5	
\checkmark	Primärvariable	2, 2, 5, 1, 1	2, 2, 5, 1, 1	
\checkmark	Messbereichswerte	2, 2, 2, 1	2, 2, 2, 1	
\checkmark	Messstellenkennzeichnung	2, 2, 7, 1, 1	2, 2, 7, 1, 1	
\checkmark	Übertragungsfunktion	2, 2, 1, 1, 6	2, 2, 1, 1, 6	
\checkmark	Druckeinheiten	2, 2, 1, 1, 4	2, 2, 1, 1, 4	
	Datum	2, 2, 7, 1, 5	2, 2, 7, 1, 4	
	Beschreibung	2, 2, 7, 1, 6	2, 2, 7, 1, 5	
	Digital/Analog-Abgleich (4-20-mA/1-5-V-Ausgang)	3, 4, 2, 1	3, 4, 2, 1	
	Digitaler Nullpunktabgleich	3, 4, 1, 3	3, 4, 1, 3	
	Anzeiger konfigurieren	2, 2, 4	2, 2, 4	
	Bedieninterface-Kennwortschutz	2, 2, 6, 5	2, 2, 6, 4	
	Messkreistest	3, 5, 1	3, 5, 1	
	Unterer Sensorabgleich	3, 4, 1, 2	3, 4, 1, 2	
	Nachricht	2, 2, 7, 1, 7	2, 2, 7, 1, 6	
	Drucktrend	3, 3, 1	3, 3, 1	
	Neueinstellung mit Tastenfeld	2, 2, 2, 1	2, 2, 2, 1	
	Skalierter D/A-Abgleich (4-20-mA/1-5-V-Ausgang)	3, 4, 2, 2	3, 4, 2, 2	
	Skalierte Variable	2, 2, 3	2, 2, 3	
	Sensortemperatur/-trend	3, 3, 3	3, 3, 3	
	HART Version ändern	2, 2, 5, 2, 4	2, 2, 5, 2, 3	
	Oberer Sensorabgleich	3, 4, 1, 1	3, 4, 1, 1	
7	Lange Kennung	2, 2, 7, 1, 2		
7	Gerät orten	3, 4, 5		
7	Digitalsignal simulieren	3,5		

Anhang D Bedieninterface

Bedieninterface-Menüstruktur	. Seite 119
Bedieninterface-Menüstruktur – Erweitertes Menü	. Seite 121
Eingabe von Ziffern	. Seite 123
Eingabe von Text	. Seite 124

D.1 Bedieninterface-Menüstruktur

Bedieninterface

Bedieninterface-Menüstruktur – Erweitertes Menü

D.3 Eingabe von Ziffern

Mithilfe des Bedieninterface können Gleitkommazahlen eingegeben werden. Zur Eingabe von Ziffern stehen alle acht Ziffernstellen auf der oberen Zeile zur Verfügung. Die Tastenfunktionen des Bedieninterface sind in Tabelle 2-2 auf Seite 12 beschrieben. Das nachfolgende Beispiel zeigt die Eingabe einer Gleitkommazahl zum Ändern des Wertes "-0000022" auf "000011.2".

Schritt	Anweisung	Aktuelle Position (angezeigt durch Unterstrich)
1	Zu Beginn der Zifferneingabe ist die Stelle ganz links die ausgewählte Stelle. In diesem Beispiel blinkt das Minuszeichen ("-") auf der Anzeige.	<u>-</u> 0000022
2	Die Scroll-Taste drücken, bis "0" an der ausgewählten Stelle auf der Anzeige blinkt.	<u>0</u> 0000022
3	Die Eingabe-Taste drücken, um "0" als Eingabewert zu akzeptieren. Anschließend blinkt die zweite Stelle von links.	0 <u>0</u> 000022
4	Die Eingabe-Taste drücken, um "0" als Eingabewert für die zweite Stelle auszuwählen. Anschließend blinkt die dritte Stelle von links.	00 <u>0</u> 00022
5	Die Eingabe-Taste drücken, um "0" als Eingabewert für die dritte Stelle auszuwählen. Anschließend blinkt die vierte Stelle von links.	000 <u>0</u> 0022
6	Die Eingabe-Taste drücken, um "0" als Eingabewert für die vierte Stelle auszuwählen. Anschließend blinkt die fünfte Stelle von links.	0000 <u>0</u> 022
7	Die Scroll-Taste drücken, um die Ziffern zu durchlaufen, bis "1" auf der Anzeige erscheint.	0000 <u>1</u> 022
8	Die Eingabe-Taste drücken, um "1" als Eingabewert für die fünfte Stelle auszuwählen. Anschließend blinkt die sechste Stelle von links.	00001 <u>0</u> 22
9	Die Scroll-Taste drücken, um die Ziffern zu durchlaufen, bis "1" auf der Anzeige erscheint.	00001 <u>1</u> 22
10	Die Eingabe-Taste drücken, um "1" als Eingabewert für die sechste Stelle auszuwählen. Anschließend blinkt die siebente Stelle von links.	000011 <u>2</u> 2
11	Die Scroll-Taste drücken, um die Ziffern zu durchlaufen, bis der Dezimalpunkt "." auf der Anzeige erscheint.	000011 <u>.</u> 2
12	Die Eingabe-Taste drücken, um den Dezimalpunkt "." als Eingabewert für die siebente Stelle auszuwählen. Nach Drücken der Eingabe-Taste werden alle Stellen rechts neben dem Dezimalpunkt auf Null gesetzt. Anschließend blinkt die achte Stelle von links.	000011. <u>0</u>
13	Die Scroll-Taste drücken, um die Ziffern zu durchlaufen, bis "2" auf der Anzeige erscheint.	000011. <u>2</u>
14	Die Eingabe-Taste drücken, um "2" als Eingabewert für die achte Stelle auszuwählen. Die Eingabe der Gleitkommazahl ist damit abgeschlossen. Zum Abschluss erscheint der Bildschirm "SAVE" (Speichern).	000011,2

Anmerkungen:

- Zum Zurückgehen während der Eingabe von Ziffern den nach links weisenden Pfeil drücken und an der gewünschten Stelle die Eingabe-Taste drücken.
- Das Minuszeichen ist nur an der ganz linken Stelle zulässig.
- Zahlen können in der wissenschaftlichen Darstellung eingegeben werden. Hierfür an der siebenten Stelle ein "E" eingeben.

D.4 Eingabe von Text

1. Mithilfe des Bedieninterface kann Text eingegeben werden. Zur Eingabe von Text stehen bis zu acht Stellen auf der oberen Zeile zur Verfügung. Die Texteingabe folgt den gleichen Regeln wie die Zifferneingabe, siehe "Bedieninterface-Menüstruktur" auf Seite 119, mit der Ausnahme, dass die folgenden Zeichen an allen Stellen verfügbar sind: A-Z, 0-9, -, /, Leerzeichen.

Anmerkungen:

 Wenn der aktuelle Text ein Zeichen enthält, das vom Bedieninterface nicht dargestellt werden kann, erscheint an der entsprechenden Stelle ein Sternchen ("*").

A

~
Abgleich des Analogausgangs 59
Abgleichen
Analogausgang 59
Auf Werksabgleich zurücksetzen
Analogausgang 66
Sensorabgleich62
Digital/Analog64
Andere Skalierung 65
Nullpunkt 60
Sensor
Vollständig 60
Adresse
Ändern
Anschlussklemmenblock
Einbau
Ausgang
Zurücksetzen auf Werksabgleich

B

Besondere Hinweise
Allgemeines
Werkstoffverträglichkeit
Betrieb
Blockschaltbild 5
Betriebsanleitung
Modellpalette 4
Verwendung 1
Blockschaltbild

D

Demontage	
Elektronikplatine ausbauen	74
Messumformer außer Betrieb nehmen	74
Sensormodul	75
Vor der Demontage	74
Demontageverfahren	74
Digital/Analog-Abgleich	64
Andere Skalierung	65

Ε

Einleitung	1
Elektronikplatine	45

F

1	
Funktionen	6

G

Gehäuse		
Entfernen	 	. 75

Н

Halterungen	
Montage	36

L

Impulsleitungen	38
Installation	36
Gehäusedeckel	36
HART Flussdiagramm	.3
Mechanische Anforderungen	35
Montage	35
Halterungen	36
Schrauben	38
Ventilblock 306	41
Installation des Ventilblocks	41

Κ

56
58
60
60
56
60
66
62

L

Leitungen,	Impuls	38

Μ

Mechanische Anforderungen	5
Messkreis	
auf Manuell schalten	2
Montage	
Anforderungen	8
Anschlussklemmenblock einbauen	5
Installation 35	5
Prozesssensor-Gehäuse	5
Sensormodul anbringen	5
Multidrop-Kommunikation	
Kommunikation 32	2
Schema 3	1

Ν

Neueinstellung	
Drucknormal	
Mit HART Handterminal	17
Mit Nullpunkt- und Messspannentasten	18
Nur mit HART Handterminal	16

Niedrigspannung		
Schemata	10,	50
Nullpunktabgleich	•••	60

Ρ

Platine, Elektronik	45
Produkt-Zulassungen	91
Prozess-	
Anschlüsse	40

S

Schemata
Multidrop-Netzwerk 31
Niedrigspannung10, 50
Typisches Multidrop-Netzwerk
Schrauben
Installation
Seite mit dem Anschlussklemmenblock
Sensor
Modul
Ausbau75
Einbau
Sensorabgleich
Service-Unterstützung
Störungsanalyse und -beseitigung
Referenztabelle

U

Unterstützung		
---------------	--	--

V

Verdrahtung	
Schemata	
Niedrigspannung	10, 50
Vollständiger Abgleich	60

W

wartung	Wartung																•												1	55	5
---------	---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	---	----	---

Ζ

Zulassungen	91
Informationen	91
Zurücksetzen auf Werksabgleich	
Analogausgang	66
Sensorabgleich	62
-	

Das Emerson Logo ist eine Marke von Emerson Electric Co. Rosemount, das Rosemount Logo und SMART FAMILY sind eingetragene Marken von Rosemount Inc. Rosemount, das Rosemount Logo und SMART FAMILY sind eingetragene Marken von Rosemount Inc. Coplanar ist eine Marke von Rosemount Inc. Halocarbon ist eine Marke der Halocarbon Products Corporation. Fluorinert ist eine eingetragene Marke von Minnesota Mining and Manufacturing Company Corporation. Syltherm 800 und D.C. 200 sind eingetragene Marken von Dow Corning Corporation. Neobee M-20 ist eine eingetragene Marke von PVO International, Inc. HART ist eine eingetragene Marke der HART Communication Foundation. FOUNDATION Fieldbus ist eine eingetragene Marke der Fieldbus Foundation. Alle anderen Marken sind Einentum übres ieweiligen Inhabers Alle anderen Marken sind Eigentum ihres jeweiligen Inhabers.

© März 2014 Rosemount, Inc. Alle Rechte vorbehalten.

Deutschland **Emerson Process Management** GmbH & Co. OHG Argelsrieder Feld 3 82234 Weßling Deutschland T+49 (0) 8153 939 - 0 F+49 (0) 8153 939 - 172 www.emersonprocess.de

Schweiz Emerson Process Management AG Blegistrasse 21 6341 Baar-Walterswil Schweiz T+41 (0) 41 768 6111 F+41 (0) 41 761 8740 www.emersonprocess.ch

Österreich

Osterreich Emerson Process Management AG Industriezentrum NÖ Süd Straße 2a, Objekt M29 2351 Wr. Neudorf Österreich T+43 (0) 2236-607 F+43 (0) 2236-607 F+43 (0) 2236-607 44 www.emersonprocess at www.emersonprocess.at

ROSEMOUNT°