Transmetteurs massiques de conditionnement Micro Motion[®] avec PROFIBUS-DP

Manuel de configuration et d'utilisation

Messages de sécurité

Les messages de sécurité qui apparaissent dans ce manuel sont destinés à garantir la sécurité du personnel d'exploitation et du matériel. Lire attentivement chaque message de sécurité avant d'effectuer les procédures qui les suivent.

Service après-vente de Micro Motion

Email

- Monde : flow.support@emerson.com
- Asie-Pacifique : APflow.support@emerson.com

Amérique du Nord e	t du Sud	Europe et Moyen-Orient		Asie-Pacifique	
Etats-Unis	800-522-6277	Royaume-Uni	0870 240 1978	Australie	800 158 727
Canada	+1 303-527-5200	Pays-Bas	+31 (0) 318 495 555	Nouvelle-Zélande	099 128 804
Mexique	+41 (0) 41 7686 111	France	0800 917 901	Inde	800 440 1468
Argentine	+54 11 4837 7000	Allemagne	0800 182 5347	Pakistan	888 550 2682
Brésil	+55 15 3238 3677	Italie	8008 77334	Chine	+86 21 2892 9000
Venezuela	+58 26 1731 3446	Europe centrale et orientale	+41 (0) 41 7686 111	Japon	+81 3 5769 6803
		Russie/CEI	+7 495 981 9811	Corée du Sud	+82 2 3438 4600
		Egypte	0800 000 0015	Singapour	+65 6 777 8211
		Oman	800 70101	Thaïlande	001 800 441 6426
		Qatar	431 0044	Malaisie	800 814 008
		Koweït	663 299 01		
		Afrique du Sud	800 991 390		
		Arabie saoudite	800 844 9564		
		UAE	800 0444 0684		

Contenu

Partie I Premiers pas

Chapitre 1	Intro	oduction au dosage avec le Transmetteur massique de conditionnement	2
	1.1	Le transmetteur massique de conditionnement de Micro Motion	2
	1.2	Types et options des dosages	2
		1.2.1 exigences E/S	4
	1.3	Options de l'interface d'utilisateur	5
Chapitre 2	Dém	arrage rapide avec ProLink II	6
	2.1	Mise sous tension du transmetteur	6
	2.2	Observer l'état du débitmètre	6
	2.3	Connexion depuis ProLink II vers le transmetteur	7
	2.4	Processus de configuration et de mise en service complet	8
		2.4.1 Tester ou régler le système à l'aide d'une simulation du capteur	8
		2.4.2 Sauvegarde la configuration du transmetteur	10
		2.4.3 Rétablir la configuration d'usine	11
Chapitre 3	Dém	arrage rapide avec PROFIBUS EDD	12
	3.1	Mise sous tension du transmetteur	12
	3.2	Observer l'état du débitmètre	13
	3.3	Configurer PROFIBUS EDD	13
	3.4	Réaliser une connexion PROFIBUS EDD avec le transmetteur	13
	3.5	Processus de configuration et de mise en service complet	14
Chapitre 4	Dém	arrage rapide avec les paramètres de bus PROFIBUS	15
	4.1	Mise sous tension du transmetteur	15
	4.2	Observer l'état du débitmètre	16
	4.3	Réaliser une connexion de paramètres de bus PROFIBUS avec le transmetteur	16
	4.4	Processus de configuration et de mise en service complet	16
		4.4.1 Rétablir la configuration d'usine avec les paramètres de bus PROFIBUS	17

Partie II Configurer et exécuter des dosages contrôlés par vanne intégrée

Chapitre 5	Prép	aration	de la configuration d'un dosage contrôlé par vanne intégrée	19
	5.1	Procéd	ure générale de configuration d'un dosage contrôlé par vanne intégrée	20
	5.2	Trucs e	t astuce pour la configuration d'un dosage contrôlé par vanne intégrée	20
		5.2.1	Paramètres par défaut définis en usine pour le dosage de base	21
Chapitre 6	Conf	igurer u	n dosage contrôlé par vanne intégrée avec ProLink II	22
-	6.1	Configu	rer un dosage contrôlé par vanne intégrée avec ProLink II	22
		6.1.1	Configurer un dosage à un palier TOR avec ProLink II	22
		6.1.2	Configurer un dosage à deux paliers TOR avec ProLink II	25
		6.1.3	Configurer un dosage temporisé avec ProLink II	30
		6.1.4	Configurer une tête de dosage double avec ProLink II	32
		6.1.5	Configurer un dosage temporisé à tête de dosage double avec ProLink II	35
	6.2	Configu	rer les options de dosage avec ProLink II	
		6.2.1	Configurer et mettre en œuvre la correction automatique d'erreur de jetée (AO	C)
			avec ProLink II	37

		6.2.2	Configurer la fonctionnalité de purge avec ProLink II	41
		6.2.3	Configurer la fonctionnalité de pompe avec ProLink II	43
	6.3	Confiau	urer le contrôle de dosage avec ProLink II (en option)	44
		6.3.1	Configurer l'entrée TOR pour le contrôle du dosage avec Prol ink II	. 44
		632	Configurer un événement pour contrôler un dosage avec ProLink II	46
		633	Actions multiples affectées à un évènement ou une entrée tout ou rien	10
	61	Configu	rer los rapports do dosago avos Drol ink II (on option)	ر ب
	0.4	6.4.1	Configurer Canal B pour fonctionner en tant que sortie TOR et signaler l'état activ désactivé (ON/OFE) de dosage avec ProLink II	49 ′é/ 49
		6.4.2	Configurer la sortie analogique pour signaler le pourcentage de dosage livré avec ProLink II	13
Chanitas 7	F ana		aant du daarma awa Dust ink II	53
Chapitre /		Config	nenit du dosage avec Prolink II	52
	7.1		Jrer un dosage controle par vanne integree avec Prolink II	52
		/. .	En cas d'echec du demarrage du dosage	54
		7.1.2	Si le dosage n'a pas pu se terminer	54
		7.1.3	Effets de Pause et Reprise sur les dosages TOR à deux paliers	55
	7.2	Effectu	er une purge manuelle à l'aide de ProLink II	61
	7.3	Nettoy	er En Place (NEP) avec ProLink II	61
	7.4	Surveill	er et analyser les opérations de dosage avec ProLink II	62
		7.4.1	Collecter des informations complémentaires détaillées pour un dosage unique av ProLink II	/ec 62
		7.4.2	Analyser la performance de dosage avec les statistiques de dosage et ProLink II	63
Chapitre 8	Conf	fiaurer u	n dosage contrôlé par vanne intégrée avec PROFIBUS EDD	65
	81	Config	irer un dosage contrôlé par vanne intégrée avec PROFIBIIS EDD	65
	011	811	Configurer un dosage TOR à un seul palier avec PROFIBUS EDD	65
		817	Configurer un dosage TOR à deux paliers avec PROFIBLIS EDD	68
		0.1.2	Configurer un dosage tomporisé avec PROFIDI SEDD	00 27
		0.1.5		כז סד
		8.1.4	Configurer un dosage a tete de dosage double avec PROFIBUS EDD	76
		8.1.5	Configurer un dosage temporise a tete de dosage double avec PROFIBUS EDD	/9
	8.2	Configu	Jirer les options de dosage avec PROFIBUS EDD	81
		8.2.1	Configurer et mettre en œuvre la correction automatique d'erreur de jetée (AOC) avec PROFIBUS EDD) 81
		8.2.2	Configurer la fonctionnalité de purge avec PROFIBUS EDD	85
		8.2.3	Configurer la fonctionnalité de pompe avec PROFIBUS EDD	87
	8.3	Configu	urer le contrôle de dosage avec PROFIBUS EDD (en option)	88
		8.3.1	Configurer l'entrée TOR pour la commande de dosage avec PROFIBUS EDD	88
		8.3.2	Configurer un événement pour contrôler un dosage avec PROFIBUS EDD	90
		8.3.3	Actions multiples affectées à un évènement ou une entrée tout ou rien	92
	8.4	Config	irer le rapport de dosage avec PROFIBUS FDD (en option)	
		8.4.1	Configurer Canal B pour fonctionner en tant que sortie TOR et signaler l'état activ désactivé (ON/OFF) de dosage avec PROFIBUS FDD	'é/ 94
		8.4.2	Configurer la sortie analogique pour signaler le pourcentage de dosage livré avec PROFIBUS FDD	
Chanitar 0	F			
Chapitre 9	ГОПС	τιοπηεπ	nent du dosage avec PROFIBUS EDD	96
	9.1	Exécute	er un dosage contrôlé par vanne intégrée avec PROFIBUS EDD	96
		9.1.1	En cas d'échec du démarrage du dosage	98
		9.1.2	Si le dosage n'a pas pu se terminer	98
		9.1.3	Effets de Pause et Reprise sur les dosages TOR à deux paliers	99
	9.2	Effectu	er une purge manuelle à l'aide de PROFIBUS EDD	105
	9.3	Nettoy	er En Place (NEP) avec les paramètres de bus PROFIBUS EDD	. 106
	9.4	Surveill	er et analyser la performance de dosage avec PROFIBUS EDD	106
		9.4.1	Collecter des informations complémentaires détaillées pour un dosage unique av PROFIBUS EDD	/ec 106
		9.4.2	Analyser la performance de dosage avec les statistiques de dosage et PROFIBUS EDD	. 107

Chapitre 10	Confi PROF	igurer u IBUS	n dosage contrôlé par vanne intégrée avec les paramètres de bus	109
	10.1	Configu PROFIB	irer un dosage contrôlé par vanne intégrée avec les paramètres de bus US	109
		10.1.1	Configurer un dosage TOR à un seul palier avec des paramètres de bus PROFIBUS	109
		10.1.2	Configurer un dosage TOR à deux paliers avec des paramètres de bus PROFIBUS 112	
		10.1.3	Configurer un dosage temporisé avec les paramètres de bus PROFIBUS	119
		10.1.4	Configurer un dosage à tête de dosage double avec les paramètres de bus PROFIBUS	121
		10.1.5	Configurer un dosage temporisé à tête de dosage double avec les paramètres d PROFIBUS	e bus 125
	10.2	Configu	rer les options de dosage avec les paramètres de bus PROFIBUS	127
		10.2.1	Configurer et mettre en œuvre la correction automatique d'erreur de jetée (AOG avec les paramètres de bus PROFIBUS	C) 128
		10.2.2	Configurer la fonctionnalité de purge avec les paramètres de bus PROFIBUS	132
		10.2.3	Configurer la fonctionnalité de pompe avec les paramètres de bus PROFIBUS	134
	10.3	Configu	rer le contrôle de dosage avec les paramètres de bus PROFIBUS (en option)	136
		10.3.1	Configurer l'entrée TOR pour la commande de dosage avec les paramètres de b PROFIBUS	us 136
		10.3.2	Configurer un événement pour contrôler un dosage avec des paramètres de bu PROFIBUS	s 138
		10.3.3	Actions multiples affectées à un évènement ou une entrée tout ou rien	140
	10.4	Configu	irer le rapport de dosage avec les paramètres de bus PROFIBUS (en option)	142
		10.4.1	Configurer Canal B pour fonctionner en tant que sortie TOR et signaler l'état act désactivé (ON/OFF) de dosage avec des paramètres de bus PROFIBUS	ivé/ 142
		10.4.2	Configurer la sortie analogique pour signaler le pourcentage de dosage livré ave paramètres de bus PROFIBUS	ec les 143
Chapitre 11	Fonc	tionnem	ent du dosage avec les paramètres de bus PROFIBUS	145
-	11.1	Effectue	er un dosage contrôlé par vanne intégrée avec les paramètres de bus PROFIBUS	145
		11.1.1	En cas d'échec du démarrage du dosage	147
		11.1.2	Si le dosage n'a pas pu se terminer	147
		11.1.3	Effets de Pause et Reprise sur les dosages TOR à deux paliers	148
	11.2	Effectue	er une purge manuelle à l'aide des paramètres de bus PROFIBUS	154
	11.3	Nettoye	er En Place (NEP) avec les paramètres de bus PROFIBUS	155
	11.4	Surveill	er et analyser la performance de dosage avec les paramètres de bus PROFIBUS	155
		11.4.1	Collecter des informations complémentaires détaillées pour un dosage unique a des paramètres de bus PROFIBUS	avec 155
		11.4.2	Analyser la performance de dosage avec les statistiques de dosage et les param de bus PROFIBUS	ètres 156

Partie III Configurer et exécuter des dosages contrôlés par vanne externe

Chapitre 12	Configurer et paramétrer des dosages contrôlés par vanne externe avec ProLink II					
	12.1 Configurer un dosage contrôlé par vanne externe avec ProLink II12.2 Configurer et exécuter un dosage à contrôle de vanne externe	159 160				
Chapitre 13	Configurer et paramétrer des dosages contrôlés par vanne externe avec PROFIBUS EDD					
	13.1 Configurer un dosage contrôlé par vanne externe avec PROFIBUS EDD13.2 Configurer et exécuter un dosage à contrôle de vanne externe	161 162				

Chapitre 14	Confi de bi	Configurer et paramétrer des dosages contrôlés par vanne externe avec les paramètres de bus PROFIBUS				
	14.1	Configurer un dosage contrôlé par vanne externe avec les paramètres de bus PROFIBUS	163			
	14.2	Configurer et exécuter un dosage à contrôle de vanne externe	165			

Partie IV Configuration générale du transmetteur

Chapitre 15	Conf	i <mark>guratio</mark>	n des mesures de procédé	167
	15.1	Caracté	risation du débitmètre (si nécessaire)	167
		15.1.1	Exemple de plaques signalétiques du capteur	168
		15.1.2	Paramètres d'étalonnage en débit (FCF, FT)	169
		15.1.3	Paramètres d'étalonnage en masse volumique (D1, D2, K1, K2, FD, DT, TC)	169
	15.2	Configu	irer les paramètres de mesure du débit massique	170
		15.2.1	Configurer l'Unité de mesure du débit massique	170
		15.2.2	Configurer l'Amortissement du débit	171
		15.2.3	Configurer le Seuil de coupure de débit massique pour les applications de dosage	172
		15.2.4	Configurer le Seuil de coupure de débit massique	173
	15.3	Configu	rer la mesure de débit volumique pour les applications sur liquide	175
		15.3.1	Configurer l'Unité de mesure du débit volumique pour les applications sur liquide	175
		15.3.2	Configurer le Seuil de coupure de débit volumique pour les applications de dosage .	177
		15.3.3	Configurer le Seuil de coupure de débit volumique	177
	15.4	Configu	irer le Sens d'écoulement	179
		15.4.1	Options disponibles pour le paramètre Sens d'écoulement	179
	15.5	Configu	irer la mesure de la masse volumique	183
		15.5.1	Configurer l'Unité de mesure de la masse volumique	184
		15.5.2	Configurer les paramètres d'écoulement biphasique	185
		15.5.3	Configurer l'Amortissement de la masse volumique	187
		15.5.4	Configurer le Seuil de coupure de la masse volumique	188
	15.6	Configu	irer la mesure de la température	188
		15.6.1	Configurer l'Unité de mesure de la température	189
		15.6.2	Configurer l'Amortissement de la température	189
	15.7	Configu	ırer la compensation de la pression	190
		15.7.1	Configurer la compensation de la pression à l'aide de ProLink II	191
		15.7.2	Configurer la compensation de la pression à l'aide de ProLink III	192
		15.7.3	Options disponibles pour le paramètre Unité de mesure de pression	194
Chapitre 16	Confi	iguratio	n des options de l'appareil et des préférences	195
	16.1	Configu	rrer la gestion des alarmes	195
		16.1.1	Configurer la Temporisation d'indication des défauts	195
		16.1.2	Configurer le Niveau de gravité des alarmes	196
	16.2	Configu	ırer les paramètres d'informations	199
		16.2.1	Configurer le Descripteur	199
		16.2.2	Configurer le Message	200
		16.2.3	Configurer la Date	200
		16.2.4	Configurer le Numéro de série du capteur	201
		16.2.5	Configurer le Matériau du capteur	201
		16.2.6	Configure le Matériau de revêtement interne du capteur	202
		16.2.7	Configurer le Type de bride du capteur	202
Chapitre 17	Intég	ration d	lu débitmètre au réseau	203
	17.1	Configu	rration des voies du transmetteur	203
	17.2	Configu	ırer la sortie analogique	204
		17.2.1	Configurer la Variable de procédé de sortie analogique	204
		17.2.2	Configurer la valeur basse d'échelle (LRV) et la valeur haute d'échelle (URV)	205
		17.2.3	Configurer le Seuil de coupure de la sortie analogique	207

	17.2.4	Configurer l'Amortissement supplémentaire	208
	17.2.5	Configurer l'Action sur défaut de la sortie analogique et le Niveau de défaut de la sortie	
		analogique	209
17.3	Configu	rer la sortie impulsions	210
	17.3.1	Configurer la Polarité de la sortie impulsions	211
	17.3.2	Configurer le Mode de réglage de la sortie impulsions	212
	17.3.3	Configurer la Largeur maximum de la sortie impulsions	213
	17.3.4	Configurer l'Action sur défaut de la sortie impulsions et le Niveau de défaut de la sortie	
		impulsions	214
17.4	Configu	rer la sortie tout-ou-rien	216
	17.4.1	Configurer la Source de la sortie tout-ou-rien	216
	17.4.2	Configurer la Polarité de la sortie tout-ou-rien	217
	17.4.3	Configurer l'Action sur défaut de la sortie tout-ou-rien	218
17.5	Configu	rer l'entrée TOR	219
	17.5.1	Configurer l'Action de l'entrée tout-ou-rien	220
	17.5.2	Configurer la Polarité de l'entrée tout-ou-rien	221
17.6	Configu	rer un événement avancé	222
	17.6.1	Options disponibles pour le paramètre Action de l'événement avancé	223
17.7	Configu	rer la communication numérique	224
	17.7.1	Configurer l'Action sur défaut des valeurs transmises par communication numérique	224

Partie V Utilisations, maintenance et dépannage

Chapitre 18	Explo	pitation du transmetteur	228
	18.1	Relever les variables de procédé	228
	18.2	Afficher les variables de procédé	229
		18.2.1 Afficher les variables de procédé à l'aide de ProLink III	229
	18.3	Afficher et acquitter des alarmes d'état	229
		18.3.1 Afficher et acquitter des alarmes à l'aide de ProLink II	229
		18.3.2 Afficher et acquitter des alertes à l'aide de ProLink III	230
		18.3.3 Afficher et acquitter des alarmes à l'aide de PROFIBUS EDD	231
		18.3.4 Vérifier l'état de l'alarme et acquitter les alarmes à l'aide des paramètres de bus PROFIBUS	231
		18.3.5 Données d'alarme dans la mémoire du transmetteur	232
	18.4	Lire les valeurs de totalisateur et de total général	232
	18.5	Démarrer et arrêter des totalisateurs et totaux généraux	233
	18.6	Remettre à zéro les totalisateurs	234
	18.7	Remettre à zéro les totaux généraux	234
Chapitre 19	Prise	en charge des mesures	236
-	19.1	Ajustage du zéro	236
		19.1.1 Ajustage du zéro à l'aide e ProLink II	236
		19.1.2 Ajustage du zéro à l'aide de ProLink III	237
		19.1.3 Ajustage du zéro du débitmètre à l'aide de PROFIBUS EDD	238
		19.1.4 Ajuster le zéro du débitmètre à l'aide des paramètres de bus PROFIBUS	240
	19.2	Vérifier le débitmètre	241
		19.2.1 Autre méthode de calcul du facteur d'ajustage de débit volumique	243
	19.3	Effectuer un étalonnage en masse volumique des fluides D1 et D2 (standard)	243
		19.3.1 Effectuer un étalonnage en masse volumique des fluides D1 et D2 à l'aide de ProLink II	244
		19.3.2 Effectuer un étalonnage en masse volumique des fluides D1 et D2 à l'aide de	
		ProLink III	245

		19.3.3	Effectuer un étalonnage en masse volumique des fluides D1 et D2 à l'aide de PROFIBUS EDD	246
		19.3.4	Effectuer un étalonnage en masse volumique des fluides D1 et D2 à l'aide de PROFIBUS bus parameters	247
	19.4	Effectue	r un étalonnage en température	248
		19.4.1	Effectuer un étalonnage en température à l'aide de ProLink II	248
		19.4.2	Effectuer un étalonnage en température à l'aide de ProLink III	249
Chapitre 20	Dépa	nnage .		251
	20.1	Alarmes	d'état	251
	20.2	Problèm	nes de mesure du débit	256
	20.3	Problèm	nes de mesure de la masse volumique	258
	20.4	Problèm	es de mesure de température	259
	20.5	Problèm	es sur les sorties analogiques	260
	20.6	Problèm	es de sortie impulsions	261
	20.7	Utilisatio	on de la simulation de capteur pour le dépannage	262
	20.8	Vérificat	tion du câblage de l'alimentation	262
	20.9	Vérifier	la mise à la terre	263
	20.10	Effectue	r des tests de boucle	263
		20.10.1	Effectuer des tests de boucle à l'aide de ProLink II	263
		20.10.2	Effectuer des tests de boucle à l'aide de ProLink III	265
		20.10.3	Effectuer des tests de boucle à l'aide de PROFIBUS EDD	266
		20.10.4	Effectuer des tests de boucle à l'aide des paramètres de bus PROFIBUS	268
	20.11	Ajuster l	es sorties analogiques	270
		20.11.1	Ajuster les sorties analogiques à l'aide de ProLink II	270
		20.11.2	Ajuster les sorties analogiques à l'aide de ProLink III	271
		20.11.3	Ajuster les sorties analogiques à l'aide de PROFIBUS EDD	271
		20.11.4	Ajuster les sorties analogiques à l'aide des paramètres de bus PROFIBUS	271
	20.12	Vérifier	la Valeur basse d'échelle et la Valeur haute d'échelle	272
	20.13	Contrôle	er l'Action sur défaut de la sortie analogique	273
	20.14	Vérifier	les interférences radio (RFI)	273
	20.15	Contrôle	er la Largeur maximum de la sortie impulsions	273
	20.16	Contrôle	er le Mode de réglage de la sortie impulsions	274
	20.17	Contrôle	er l'Action sur défaut de la sortie impulsions	274
	20.18	Vérificat	tion du paramètre Sens d'écoulement	274
	20.19	Contrôle	er les seuils de coupure	274
	20.20	Mise en	évidence d'un écoulement biphasique	275
	20.21	Vérificat	tion du niveau d'excitation	275
		20.21.1	Collecter des données de niveau d'excitation	277
	20.22	Vérificat	tion du niveau de détection	277
		20.22.1	Collecter des données de tension de détection	278
	20.23	Vérificat	tion de court-circuit	278

Annexes et références

Annexe A	Valeurs par défaut et plages de réglage	
	A.1 Valeurs par défaut et plages de réglage	
Annexe B	Utilisation de ProLink II avec le transmetteur	
	B.1 Informations de base sur ProLink II	
	B.2 Arborescences de menus de ProLink II	
Annexe C	Configuration et utilisation des interfaces PROFIBUS	290
	C.1 Fonctionnalité PROFIBUS-DP prise en charge par le transmetteur	
	C.2 Options de communications PROFIBUS	291
	C.3 Arborescence des menus de PROFIBUS EDD	
	C.A. Configurer le CSD	208

	C.4.1	Modules d'entrée dans le GSD	299
	C.4.2	Modules de sortie dans le GSD	303
	C.4.3	Contenu des octets de diagnostic 11 à 24	304
C.5	Utiliser l	es paramètres de bus PROFIBUS	309
	C.5.1	Types de données PROFIBUS	309
	C.5.2	Bloc de mesure PROFIBUS (emplacement 1) et informations liées	310
	C.5.3	Bloc d'étalonnage PROFIBUS (emplacement 2) et informations liées	315
	C.5.4	Bloc de diagnostic PROFIBUS (emplacement 3) et informations liées	319
	C.5.5	Bloc d'informations sur l'appareil PROFIBUS (emplacement 4) et informations	
		liées	329
	C.5.6	Bloc de dosage PROFIBUS et informations liées	332
	C.5.7	Bloc des fonctions d'identification et de maintenance PROFIBUS	345
Index			

Contenu

Partie I Premiers pas

Chapitres inclus dans cette partie:

- Introduction au dosage avec le Transmetteur massique de conditionnement
- Démarrage rapide avec ProLink II
- Démarrage rapide avec PROFIBUS EDD
- Démarrage rapide avec les paramètres de bus PROFIBUS

1

Introduction au dosage avec le Transmetteur massique de conditionnement

Sujets couverts dans ce chapitre:

- Le transmetteur massique de conditionnement de Micro Motion
- Types et options des dosages
- Options de l'interface d'utilisateur

1.1 Le transmetteur massique de conditionnement de Micro Motion

Le transmetteur massique de conditionnement est conçu pour tout procédé requérant un conditionnement ou un dosage à grande vitesse et de haute précision.

Le transmetteur massique de conditionnement, associé à une sonde Coriolis de Micro Motion, permet un une mesure massique insensible aux changements de nature de fluide, de température ou de pression . Les doses contrôlées par vannes intégrées sont implémentées par des sorties tout ou rien de haute précision, pour fournir la réponse de vanne la plus rapide possible. La correction automatique d'erreur de jetée ajuste le système afin de réduire les délais de traitement au niveau des commandes de vannes. Le dosage volumique est également disponible.

Le transmetteur massique de conditionnement met en œuvre tous les algorithmes de traitement du signal numérique, les diagnostics, et les fonctions avancés de la famille de transmetteurs Micro Motion.

1.2 Types et options des dosages

En fonction de votre option d'achat, le Transmetteur massique de conditionnement prend en charge soit les dosages contrôlés par vanne intégrée, soit les dosages contrôlés par vanne externe. Pour les installations contrôlées par vanne intégrée, il existe cinq types de dosages contrôlés par vanne intégrée et trois options de dosage. Chaque type et combinaison de dosage a des exigences différentes en terme de sortie et est configuré différemment.

Code de modèle du transmetteur	Types de dosages pris en charge	Description
FMT*P FMT*Q	Commande de vanne ex- terne	Le transmetteur mesure le débit et envoie les données de l'écoulement à un hôte sur la sortie fréquence/impulsions. L'hôte ouvre et ferme les vannes et effectue la mesure du dos- age. Le transmetteur n'a pas conscience de l'application de dosage.

Tableau 1-1: Types et descriptions des dosages

Code de modèle du transmetteur	Types de dosages pris en charge	Description
FMT*R FMT*S FMT*T FMT*U FMT*V	Commande de vanne inté- grée	L'hôte démarre le dosage. Le transmetteur réinitialise le total dosé, ouvre les vannes, effectue la mesure du dosage et ferme les vannes.
	Tout-ou-rien (1 palier)	Le dosage est contrôlé par une seule vanne TOR. La vanne s'ouvre complètement au début du dosage et se ferme com- plètement lorsque la Quantité à délivrée est atteinte,ou lorsque le dosage est interrompu ou arrêté définitivement.
	2 paliers tout-ou-rien	Le dosage est contrôlé par deux vannes TOR, appelées vanne principale et vanne secondaire. Une de ces vannes doit s'ouvrir au début du dosage ; l'autre s'ouvre à un point défini par l'uti- lisateur. Une des vannes doit rester ouverte jusqu'à la fin du dosage ; l'autre se ferme à un point défini par l'utilisateur.
	Temporisée	La vanne reste ouverte pendant le nombre de secondes indi- qué.
	Tête de dosage double	 Séquence de dosage : Le Conteneur #1 est positionné. La Tête de dosage #1 commence à remplir le Conteneur #1, et le Conteneur #2 est positionné. Fin du dosage #1. La Tête de dosage #2 commence à remplir le Conteneur #2. Le Conteneur #1 est remplacé par un nouveau conteneur. Le contrôle du dosage à un palier standard est mis en œuvre pour les deux dosages : la vanne s'ouvre complètement au dé- but du dosage et se ferme complètement lorsque la Quantité à délivrée est atteinte, ou lorsque le dosage est interrompu ou ar- rêté définitivement.
	Tête de dosage double temporisée	 Séquence de dosage : Le Conteneur #1 est positionné. La Tête de dosage #1 commence à remplir le Conteneur #1, et le Conteneur #2 est positionné. Fin du dosage #1. La Tête de dosage #2 commence à remplir le Conteneur #2. Le Conteneur #1 est remplacé par un nouveau conteneur. Le contrôle temporisé est mis en œuvre pour les deux dos- ages : chaque vanne s'ouvre pendant le nombre de secondes indiqué.

Tableau 1-1: Typ	es et descriptions	des dosages (suite)
------------------	--------------------	---------------------

Tableau 1-2: Options et descriptions des dosages

Option	Description	Compatibilité
Purge	La fonction Purge est utilisée pour contrôler une vanne auxiliaire pouvant servir à des tâches autres que le dosage. Par exemple, elle peut servir à l'ajout d'eau ou de gaz dans le conteneur après le dosage, ou au "remplissage." Le déb- it dans la vanne auxiliaire n'est pas mesuré par le transmet- teur.	 Compatible avec : Dosages à 1 palier TOR Dosages à deux paliers TOR Dosages temporisés

Option	Description	Compatibilité
Pompe	La fonction Pompe est utilisée pour augmenter la pression pendant le dosage en démarrant une pompe en amont juste avant de démarrer le dosage.	Compatible avec : • Dosages à 1 palier TOR
Correction auto- matique d'erreur de jetée (AOC)	La correction automatique d'erreur de jetée (AOC) est uti- lisée pour ajuster la temporisation du dosage afin de com- penser le temps requis pour transmettre la commande de fermeture de la vanne afin que celle-ci se ferme complète- ment.	 Compatible avec : Dosages à 1 palier TOR Dosages à deux paliers TOR Dosages par tête de dosage double

Tableau 1-2. Options et descriptions des dosages (sun	Tableau 1-2:	Options et d	escriptions	des do	sages	'suite
---	--------------	--------------	-------------	--------	-------	--------

1.2.1 exigences E/S

Pour mettre en œuvre un type de dosage et une option de dosage spécifiques, relier les câbles de sortie tout-ou-rien du transmetteur aux vannes ou appareils adéquats et les configurer correctement.

Tableau 1-3:	Caractéristiques	E/S pour	les types	et options	de dosage
--------------	------------------	----------	-----------	------------	-----------

Type de dosage		Précision DO1	Précision DO2	Canal B fonc- tionnant comme DO	Sortie ana- logique	Sortie impul- sions
Commande de vanne externe		SO	SO	Au choix	SO	À l'hôte
Commande de vanne inté-	Tout-ou-rien (1 palier)	Vanne princi- pale	SO	SO	Au choix	SO
grée	Tout-ou-rien (1 palier) avec purge	Vanne princi- pale	SO	Vanne de purge	Au choix	SO
	Tout-ou-rien (1 palier) avec pompe	Vanne princi- pale	Pompe	Au choix	Au choix	SO
	Tout-ou-rien (2 pal- iers)	Vanne princi- pale	Vanne sec- ondaire	Au choix	Au choix	SO
	Tout-ou-rien (2 pal- iers) avec purge	Vanne princi- pale	Vanne sec- ondaire	Vanne de purge	Au choix	SO
	Temporisée	Vanne princi- pale	SO	Au choix	Au choix	SO
	Temporisée avec purge	Vanne princi- pale	SO	Vanne de purge	Au choix	SO
	Tête de dosage dou- ble	Vanne de la tête de dos- age n° 1	Vanne de la tête de dos- age n° 2	Au choix	Au choix	SO
	Tête de dosage dou- ble temporisée	Vanne de la tête de dos- age n° 1	Vanne de la tête de dos- age n° 2	Au choix	Au choix	SO

1.3 Options de l'interface d'utilisateur

Vos options d'interface utilisateur et d'exécution de dosage dépendent du protocole pris en charge par votre transmetteur Le code de modèle de votre transmetteur identifie ce protocole.

		Options d'inter	face utilisateur
Code de modèle du transmetteur	Protocole pris en charge	Configuration, maintenance, et dépannage	Fonctionnement du dosage
FMT*P FMT*R FMT*S FMT*T	Modbus	ProLink IIUtilitaire Modbus	 ProLink II Hôte Modbus
FMT*Q FMT*U FMT*V	PROFIBUS-DP	 ProLink II EDD Paramètres du bus de terrain 	 ProLink II EDD GSD Paramètres du bus de terrain

Tableau 1-4: Options d'interface utilisateur et protocole du transmetteur

2 Démarrage rapide avec ProLink II

Sujets couverts dans ce chapitre:

- Mise sous tension du transmetteur
- Observer l'état du débitmètre
- Connexion depuis ProLink II vers le transmetteur
- Processus de configuration et de mise en service complet

2.1 Mise sous tension du transmetteur

Le transmetteur doit être sous tension pour toutes les tâches de configuration et de mise en service, mais aussi pour les mesures de procédé.

- 1. Prendre les mesures nécessaires afin de s'assurer que la présence d'un nouvel appareil au sein du réseau n'interférera pas avec les boucles de mesurage et de régulation du procédé existantes.
- 2. Veiller à ce que les câbles soient connectés au transmetteur, comme expliqué à la section *Micro Motion Filling Mass Transmitters: Installation Manual*.
- 3. Vérifier que tous les couvercles et joints du transmetteur et du capteur sont fermés et étanches.

ATTENTION !

Afin d'éviter l'inflammation d'atmosphères inflammables ou combustibles, s'assurer que tous les couvercles et joints sont bien fermés. Pour les installations en atmosphères explosives, une mise sous tension alors que les couvercles du boîtier sont retirés peut causer une explosion.

4. Mettre le transmetteur sous tension au niveau de l'alimentation.

Le transmetteur effectue alors une séquence de diagnostics automatique. Pendant cette période, l'alarme 009 est active. La procédure de diagnostic doit se terminer au bout de 30 secondes environ.

Postrequis

Bien que le capteur soit prêt à recevoir un liquide de procédé peu de temps après la mise sous tension, jusqu'à 10 minutes peuvent être nécessaires pour que l'électronique soit complètement chauffée. Par conséquent, s'il s'agit du premier démarrage ou si l'alimentation a été coupée assez longtemps pour que les composants retombent à la température ambiante, laisser l'électronique chauffer pendant environ 10 minutes avant d'exploiter les mesures de procédé. Pendant cette période de chauffe, il est possible que le transmetteur présente une certaine instabilité et que les mesures soient légèrement inexactes.

2.2 Observer l'état du débitmètre

Recherchez une éventuelle condition d'erreur du débitmètre nécessitant une action de l'utilisateur ou affectant la précision de la mesure.

1. Patientez 10 secondes environ que la séquence de mise sous tension soit terminée.

Immédiatement après la mise sous tension, le transmetteur exécute des routines de diagnostic et recherche des conditions d'erreur. Pendant la séquence de mise sous tension, l'alarme A009 est active. Cette alarme doit disparaître automatiquement une fois la séquence de mise sous tension terminée.

2. Connectez au transmetteur et observez les alarmes actives.

Postrequis

Pour plus d'informations sur l'affichage de la liste d'alarmes actives, reportez-vous à *Section 18.3*.

Pour plus d'informations sur les alarmes et les suggestions de résolution, reportez-vous à *Section 20.1*.

2.3 Connexion depuis ProLink II vers le transmetteur

Une connexion depuis ProLink II vous permet d'utiliser ProLink II pour consulter les grandeurs mesurées, configurer le transmetteur ou réaliser des opérations de maintenance et de dépannage, ou exécuter un dosage.

Prérequis

Les programmes suivants doivent être installées et prêts à l'emplo :

- ProLink II v2.91 ou plus récent
- ProLink II kit d'installation pour connexions Modbus/RS-485

Procédure

- 1. Raccordez les fils de votre convertisseur de signal aux câbles raccordés aux ports de service ou RS-485 du transmetteur. Voir *Micro Motion Filling Mass Transmitters: Installation Manual* pour plus d'informations.
- 2. Démarrer ProLink II et choisir Connecter > Connecter au périphérique.
- 3. Dans la boîte de dialogue Connexion, entrer les paramètres indiqués ici puis cliquer sur Connecter.

Paramètre de communica-	Protocole du transmetteur			
tion	Modbus	PROFIBUS-DP		
Protocole	Modbus RTU	Port service		
Port COM	Port utilisé sur votre PC pour cette connexion	Port utilisé sur votre PC pour cette connexion		
Adresse	Adresse Modbus du trans- metteur configurée (valeur par défaut = 1)	SO		

Remarque

Le transmetteur analyse automatiquement la demande de connexion entrante et répond à toutes les demandes de connexion, quels que soient les paramètres de bits de parité et d'arrêt, et les vitesses de réseau entre 1 200 et 38 400 baud. Il n'est pas nécessaire de définir des valeurs pour ces paramètres de connexion.

Si la connexion réussit, ProLink II affiche l'écran Variables de procédé.

Besoin d'aide? Si un message d'erreur s'affiche :

- Vérifiez que vous avez spécifié le port COM approprié.
- Vérifiez tous les câblages entre votre PC et le transmetteur.
- Ajoutez des résistances de terminaison de 120 Ω, 1/2 watt aux deux extrémités du segment.

2.4 Processus de configuration et de mise en service complet

Utilisez la procédure suivante comme guide général tout au long du processus de configuration et de mise en service du transmetteur.

- 1. Configurer le dosage.
 - Pour les dosages contrôlés par vanne intégrée, voir *Chapitre* 6.
 - Pour les dosages contrôlées par vanne externe, voir Chapitre 12.
- 2. Procéder à la configuration du transmetteur requise et non spécifiquement liée au dosage.

Voir Chapitre 15, Chapitre 16 et Chapitre 17.

3. Tester ou régler votre système à l'aide d'une simulation du capteur.

Voir Section 2.4.1.

4. Enregistrer la configuration du transmetteur dans un fichier sur votre ordinateur.

Voir Section 2.4.2.

Besoin d'aide ? Vous pouvez rétablir à tout moment la configuration d'usine pour revenir à une configuration opérationnelle connue du transmetteur. Voir *Section 2.4.3*.

2.4.1 Tester ou régler le système à l'aide d'une simulation du capteur

Utilisez une simulation du capteur pour tester la réponse du système à diverses conditions de procédé, notamment des conditions de limites, de problèmes ou d'alarmes, ou pour régler la boucle.

Prérequis

Avant d'activer une simulation du capteur, vérifiez que le procédé peut prendre en charge les effets des valeurs de procédé simulées.

Procédure

1. Accédez au menu de simulation du capteur.

Outil de communication	Chemin du menu
ProLink II	ProLink > Configuration > Simulation du capteur
ProLink III	Outils d'appareil > Diagnostics > Tests > Simulation du capteur

- 2. Activez la simulation du capteur.
- 3. Pour le débit massique, réglez Forme d'onde sur l'option souhaitée et saisissez les valeurs requises.

Option	Valeurs requises
Fixe	Valeur fixe
Dent de scie	Période
	Minimum
	Maximum
Sinusoïdale	Période
	Minimum
	Maximum

4. Pour la densité, réglez Forme d'onde sur l'option souhaitée et saisissez les valeurs requises.

Option	Valeurs requises
Fixe	Valeur fixe
Dent de scie	Période
	Minimum
	Maximum
Sinusoïdale	Période
	Minimum
	Maximum

5. Pour la température, réglez Forme d'onde sur l'option souhaitée et saisissez les valeurs requises.

Option	Valeurs requises
Fixe	Valeur fixe
Dent de scie	Période
	Minimum
	Maximum
Sinusoïdale	Période
	Minimum
	Maximum

- 6. Observez la réponse du système aux valeurs simulées et apportez les modifications appropriées à la configuration du transmetteur ou au système.
- 7. Modifiez les valeurs simulées et répétez.
- 8. Une fois le test ou le réglage terminé, désactivez la simulation du capteur.

Simulation de capteur

La simulation de capteur permet de tester le système ou d'ajuster la boucle sans avoir à créer les conditions de test au sein du procédé. Lorsque la simulation de capteur est activée, le transmetteur indique les valeurs simulées pour le débit massique, la masse volumique et la température, et il agit en conséquence. Par exemple, le transmetteur peut appliquer un seuil de coupure, activer un événement ou générer une alarme.

Lorsque la simulation de capteur est activée, les valeurs simulées sont stockées aux mêmes endroits de la mémoire que les données de procédé provenant du capteur. Les valeurs simulées sont ensuite utilisées pour l'ensemble des fonctions du transmetteur. Par exemple, la simulation de facteur peut affecter :

- Toutes les valeurs de débit massique, de température et de masse volumique affichées sur l'indicateur ou transmises via les sorties ou par communication numérique
- Les valeurs des totalisateurs partiels et généraux en masse
- Tous les calculs et toutes les données de volume affichées et transmises, y compris les totalisations partielles et générales en volume
- Toutes les valeurs de masse, de température, de masse volumique ou de volume consignées dans le module Acquisition de données

La simulation de capteur n'affecte pas les valeurs de diagnostic.

Contrairement aux valeurs de débit massique et de masse volumique réelles, les valeurs simulées ne sont pas corrigées en température (l'effet de la température sur les tubes de mesure du capteur n'est pas compensé).

2.4.2 Sauvegarde la configuration du transmetteur

ProLink II et ProLink III offre une fonction de téléchargement et de sauvegarde. Ceci vous permet de sauvegarder et de restaurer la configuration de votre transmetteur. C'est aussi un moyen pratique de dupliquer une configuration sur plusieurs appareils.

Prérequis

Un des éléments suivants :

- Une connexion active de
- Une connexion active de

Restriction

Aucun autre outil de communication n'offre cette fonction.

Procédure

- Pour sauvegarder la configuration du transmetteur à l'aide de :
 - 1. Sélectionnez Fichier > Enregistr. du transm. vers fichier.

- 2. Spécifiez le nom et le lieu d'enregistrement du fichier de sauvegarde, puis cliquez sur Enregistrer.
- 3. Sélectionnez les options à inclure dans le fichier de sauvegarde et cliquez sur Télécharger la configuration.
- Pour sauvegarder la configuration du transmetteur à l'aide de :
 - 1. Sélectionnez Outils de l'appareil > Transfert de configuration > Enregistrer ou charger des données de configuration.
 - 2. Dans la zone de groupe Configuration, sélectionnez les données de configuration à enregistrer.
 - 3. Cliquez sur Enregistrer, puis spécifiez un nom de fichier et un emplacement sur votre ordinateur.
 - 4. Cliquez sur Démarrer l'enregistrement.

Le fichier de sauvegarde est enregistré sous le nom et à l'emplacement spécifiés. Il est enregistré en tant que fichier texte et peut être lu à l'aide de tout éditeur de texte.

2.4.3 Rétablir la configuration d'usine

ProLink II	ProLink > Configuration > Appareil > Rétablir la configuration d'usine
ProLink III	Outils d'appareil > Transfert de configuration > Rétablir la configuration d'usine

Vue d'ensemble

Le rétablissement de la configuration d'usine permet de revenir à une configuration opérationnelle connue du transmetteur. Ceci peut être utile si vous rencontrez des problèmes pendant la configuration.

Conseil

Le rétablissement de la configuration d'usine n'est pas une action courante. Vous souhaiterez peutêtre contacter Micro Motion pour savoir si cette méthode est à appliquer pour résoudre des problèmes.

3

Démarrage rapide avec PROFIBUS EDD

Sujets couverts dans ce chapitre:

- Mise sous tension du transmetteur
- Observer l'état du débitmètre
- Configurer PROFIBUS EDD
- Réaliser une connexion PROFIBUS EDD avec le transmetteur
- Processus de configuration et de mise en service complet

3.1 Mise sous tension du transmetteur

Le transmetteur doit être sous tension pour toutes les tâches de configuration et de mise en service, mais aussi pour les mesures de procédé.

- 1. Prendre les mesures nécessaires afin de s'assurer que la présence d'un nouvel appareil au sein du réseau n'interférera pas avec les boucles de mesurage et de régulation du procédé existantes.
- 2. Veiller à ce que les câbles soient connectés au transmetteur, comme expliqué à la section *Micro Motion Filling Mass Transmitters: Installation Manual*.
- 3. Vérifier que tous les couvercles et joints du transmetteur et du capteur sont fermés et étanches.

ATTENTION !

Afin d'éviter l'inflammation d'atmosphères inflammables ou combustibles, s'assurer que tous les couvercles et joints sont bien fermés. Pour les installations en atmosphères explosives, une mise sous tension alors que les couvercles du boîtier sont retirés peut causer une explosion.

4. Mettre le transmetteur sous tension au niveau de l'alimentation.

Le transmetteur effectue alors une séquence de diagnostics automatique. Pendant cette période, l'alarme 009 est active. La procédure de diagnostic doit se terminer au bout de 30 secondes environ.

Postrequis

Bien que le capteur soit prêt à recevoir un liquide de procédé peu de temps après la mise sous tension, jusqu'à 10 minutes peuvent être nécessaires pour que l'électronique soit complètement chauffée. Par conséquent, s'il s'agit du premier démarrage ou si l'alimentation a été coupée assez longtemps pour que les composants retombent à la température ambiante, laisser l'électronique chauffer pendant environ 10 minutes avant d'exploiter les mesures de procédé. Pendant cette période de chauffe, il est possible que le transmetteur présente une certaine instabilité et que les mesures soient légèrement inexactes.

3.2 Observer l'état du débitmètre

Recherchez une éventuelle condition d'erreur du débitmètre nécessitant une action de l'utilisateur ou affectant la précision de la mesure.

1. Patientez 10 secondes environ que la séquence de mise sous tension soit terminée.

Immédiatement après la mise sous tension, le transmetteur exécute des routines de diagnostic et recherche des conditions d'erreur. Pendant la séquence de mise sous tension, l'alarme A009 est active. Cette alarme doit disparaître automatiquement une fois la séquence de mise sous tension terminée.

2. Connectez au transmetteur et observez les alarmes actives.

Postrequis

Pour plus d'informations sur l'affichage de la liste d'alarmes actives, reportez-vous à *Section 18.3*.

Pour plus d'informations sur les alarmes et les suggestions de résolution, reportez-vous à *Section 20.1*.

3.3 Configurer PROFIBUS EDD

PROFIBUS EDD prend en charge les communications acycliques entre le transmetteur et un hôte PROFIBUS. Vous pouvez utiliser l'EDD pour configurer le transmetteur et effectuer une opération manuelle et des fonctions de maintenance.

- 1. Téléchargez l'EDD correspond à votre transmetteur sur le site Web d'Emerson.
 - a. Utilisez votre navigateur pour accéder à www.micromotion.com.
 - b. Dans la liste Liens rapides, cliquez sur Téléchargements logiciels, puis accédez à la page Pilotes d'appareils.
 - c. Accédez au kit d'installation d'appareil correspondant à votre transmetteur, sélectionnez l'EDD, puis téléchargez-le sur votre ordinateur.
- 2. Importez l'EDD sur votre hôte PROFIBUS.
- 3. Configurez votre hôte PROFIBUS avec l'adresse de noeud du transmetteur et les autres informations requises.

Conseil

L'adresse de nœud du transmetteur a été définie pendant l'installation du transmetteur. Voir *Micro Motion Filling Mass Transmitters: Installation Manual* pour plus d'informations.

3.4 Réaliser une connexion PROFIBUS EDD avec le transmetteur

Une connexion de paramètres de bus PROFIBUS vous permet d'utiliser les paramètres de bus PROFIBUS ou l'outil PROFIBUS pour consulter les grandeurs mesurées, configurer le transmetteur, ou réaliser des opérations de maintenance et de dépannage, ou exécuter un dosage.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS comme Siemens Simatic PDM.

L'EDD de Micro Motion doit être installé.

Procédure

- 1. Lancez votre outil de configuration PROFIBUS.
- 2. Connectez-vous au transmetteur grâce à la méthode appropriée à votre environnement.

Conseil

L'adresse de nœud du transmetteur a été définie pendant l'installation du transmetteur. Voir *Micro Motion Filling Mass Transmitters: Installation Manual* pour plus d'informations.

3.5 Processus de configuration et de mise en service complet

Utilisez la procédure suivante comme guide général tout au long du processus de configuration et de mise en service du transmetteur.

- 1. Configurer le dosage.
 - Pour les dosages contrôlés par vanne intégrée, voir Chapitre 8.
 - Pour les dosages contrôlées par vanne externe, voir Chapitre 13.
- 2. Procéder à la configuration du transmetteur requise et non spécifiquement liée au dosage.

Voir Chapitre 15, Chapitre 16 et Chapitre 17.

4 Démarrage rapide avec les paramètres de bus PROFIBUS

Sujets couverts dans ce chapitre:

- Mise sous tension du transmetteur
- Observer l'état du débitmètre
- Réaliser une connexion de paramètres de bus PROFIBUS avec le transmetteur
- Processus de configuration et de mise en service complet

4.1 Mise sous tension du transmetteur

Le transmetteur doit être sous tension pour toutes les tâches de configuration et de mise en service, mais aussi pour les mesures de procédé.

- 1. Prendre les mesures nécessaires afin de s'assurer que la présence d'un nouvel appareil au sein du réseau n'interférera pas avec les boucles de mesurage et de régulation du procédé existantes.
- 2. Veiller à ce que les câbles soient connectés au transmetteur, comme expliqué à la section Micro Motion Filling Mass Transmitters: Installation Manual .
- 3. Vérifier que tous les couvercles et joints du transmetteur et du capteur sont fermés et étanches.

ATTENTION !

Afin d'éviter l'inflammation d'atmosphères inflammables ou combustibles, s'assurer que tous les couvercles et joints sont bien fermés. Pour les installations en atmosphères explosives, une mise sous tension alors que les couvercles du boîtier sont retirés peut causer une explosion.

4. Mettre le transmetteur sous tension au niveau de l'alimentation.

Le transmetteur effectue alors une séquence de diagnostics automatique. Pendant cette période, l'alarme 009 est active. La procédure de diagnostic doit se terminer au bout de 30 secondes environ.

Postrequis

Bien que le capteur soit prêt à recevoir un liquide de procédé peu de temps après la mise sous tension, jusqu'à 10 minutes peuvent être nécessaires pour que l'électronique soit complètement chauffée. Par conséquent, s'il s'agit du premier démarrage ou si l'alimentation a été coupée assez longtemps pour que les composants retombent à la température ambiante, laisser l'électronique chauffer pendant environ 10 minutes avant d'exploiter les mesures de procédé. Pendant cette période de chauffe, il est possible que le transmetteur présente une certaine instabilité et que les mesures soient légèrement inexactes.

4.2 Observer l'état du débitmètre

Recherchez une éventuelle condition d'erreur du débitmètre nécessitant une action de l'utilisateur ou affectant la précision de la mesure.

1. Patientez 10 secondes environ que la séquence de mise sous tension soit terminée.

Immédiatement après la mise sous tension, le transmetteur exécute des routines de diagnostic et recherche des conditions d'erreur. Pendant la séquence de mise sous tension, l'alarme A009 est active. Cette alarme doit disparaître automatiquement une fois la séquence de mise sous tension terminée.

2. Connectez au transmetteur et observez les alarmes actives.

Postrequis

Pour plus d'informations sur l'affichage de la liste d'alarmes actives, reportez-vous à *Section 18.3*.

Pour plus d'informations sur les alarmes et les suggestions de résolution, reportez-vous à *Section 20.1*.

4.3 Réaliser une connexion de paramètres de bus PROFIBUS avec le transmetteur

Une connexion de paramètres de bus PROFIBUS vous permet d'utiliser les paramètres de bus PROFIBUS ou l'outil PROFIBUS pour consulter les grandeurs mesurées, configurer le transmetteur, ou réaliser des opérations de maintenance et de dépannage, ou exécuter un dosage.

Prérequis

Vous devez disposer d'un outil PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1.

Procédure

- 1. Lancez votre outil PROFIBUS.
- 2. Connectez-vous au transmetteur grâce à la méthode appropriée à votre environnement.

Conseil

L'adresse de nœud du transmetteur a été définie pendant l'installation du transmetteur. Voir *Micro Motion Filling Mass Transmitters: Installation Manual* pour plus d'informations.

4.4 Processus de configuration et de mise en service complet

Utilisez la procédure suivante comme guide général tout au long du processus de configuration et de mise en service du transmetteur.

1. Configurer le dosage.

- Pour les dosages contrôlés par vanne intégrée, voir *Chapitre 10*.
- Pour les dosages contrôlées par vanne externe, voir Chapitre 14.
- 2. Procéder à la configuration du transmetteur requise et non spécifiquement liée au dosage.

Voir Chapitre 15, Chapitre 16 et Chapitre 17.

Besoin d'aide ? Vous pouvez rétablir à tout moment la configuration d'usine pour revenir à une configuration opérationnelle connue du transmetteur. Voir *Section 4.4.1*.

4.4.1 Rétablir la configuration d'usine avec les paramètres de bus PROFIBUS

Le rétablissement de la configuration d'usine permet de revenir à une configuration opérationnelle connue du transmetteur. Ceci peut être utile si vous rencontrez des problèmes pendant la configuration.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

Ecrire 1 dans le bloc de diagnostic, index 51.

Partie II Configurer et exécuter des dosages contrôlés par vanne intégrée

Chapitres inclus dans cette partie:

- Préparation de la configuration d'un dosage contrôlé par vanne intégrée
- Configurer un dosage contrôlé par vanne intégrée avec ProLink II
- Fonctionnement du dosage avec ProLink II
- Configurer un dosage contrôlé par vanne intégrée avec PROFIBUS EDD
- Fonctionnement du dosage avec PROFIBUS EDD
- Configurer un dosage contrôlé par vanne intégrée avec les paramètres de bus PROFIBUS
- Fonctionnement du dosage avec les paramètres de bus PROFIBUS

5

Préparation de la configuration d'un dosage contrôlé par vanne intégrée

Sujets couverts dans ce chapitre:

- Procédure générale de configuration d'un dosage contrôlé par vanne intégrée
- Trucs et astuce pour la configuration d'un dosage contrôlé par vanne intégrée

5.1 Procédure générale de configuration d'un dosage contrôlé par vanne intégrée

5.2 Trucs et astuce pour la configuration d'un dosage contrôlé par vanne intégrée

Avant de commencer la configuration de votre dosage, vérifiez les points suivants :

- Quand vous configurez un dosage, commencez par les paramètres par défaut définis en usine. Si vous ne commencez pas par ces paramètres, le transmetteur risque de rejeter certaines combinaisons de paramètres. Voir *Section 5.2.1*.
- Le paramétrage du Seuil de coupure du débit massique ou du Seuil de coupure du débit volumique est important pour la précision du dosage. Assurez-vous de régler le seuil de coupure approprié avant de démarrer un dosage, ou avant d'effectuer un étalonnage AOC. Si vous effectuez une mesure massique du dosage, consultez *Section 15.2.3.* Si vous effectuez une mesure volumique du dosage, consultez *Section 15.3.2.*
- Le réglage du Sens d'écoulement contrôle de quelle façon le total dosé est mesuré. Pour les dosages contrôlés par vanne externe, voir Effet du paramètre Sens d'écoulement sur le total de dosage.
- La mesure et l'exécution du dosage peuvent être affectées par d'autres paramètres du transmetteur. Vérifiez les informations de configuration générale dans *Chapitre 15, Chapitre 16, et Chapitre 17.*
- Vous pouvez modifier la configuration du dosage ou la configuration générale du transmetteur pendant un dosage. Le changement de configuration prendra effet à la fin du dosage en cours.

5.2.1 Paramètres par défaut définis en usine pour le dosage de base

Pour configurer un dosage, commencez par les paramètres par défaut définis en usine répertoriés ici. Si vous ne commencez pas par ces paramètres, le transmetteur risque de rejeter certaines combinaisons de paramètres.

Paramètre	Paramètre par défaut défini en usine
Autoriser le dosage	Activé
Autoriser le double dosage	Désactivé
Corr. autom. d'erreur de jetée	Activé
Activer la purge	Désactivé
Autoriser le dosage temporisé	Désactivé
Type de dosage	Tout-ou-rien
Incrémentation	Activé
Mode de configuration	% quantité à délivrer

Tableau 5-1: Paramètres de dosage de base et paramètres par défaut définis en usine

6

Configurer un dosage contrôlé par vanne intégrée avec ProLink II

Sujets couverts dans ce chapitre:

- Configurer un dosage contrôlé par vanne intégrée avec ProLink II
- Configurer les options de dosage avec ProLink II
- Configurer le contrôle de dosage avec ProLink II (en option)
- Configurer les rapports de dosage avec ProLink II (en option)

6.1 Configurer un dosage contrôlé par vanne intégrée avec ProLink II

Configurez le type de dosage approprié à votre application.

Conseil

Le dosage tout-ou-rien à une étape convient à la plupart des applications. Utilisez ce type de dosage, sauf si vous devez explicitement utiliser un autre type de dosage. Dans la plupart des cas, le transmetteur est configuré en usine pour un dosage tout-ou-rien à une étape et est opérationnel avec une configuration minimale sur site.

6.1.1 Configurer un dosage à un palier TOR avec ProLink II

Configurez un dosage tout-ou-rien à une étape lorsque vous souhaitez doser un seul conteneur à partir d'une seule vanne. La vanne sera ouverte jusqu'à ce que la Cible du dosage soit atteinte.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Choisissez ProLink > Configuration > Sortie tout-ou-rien.
 - b. Définir STOR1 précision sur Vanne principale.
 - c. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc

Option	Signal du transmetteur	Tension
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Ouvrez le panneau Débit.
 - b. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

c. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

d. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

e. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

- 3. Ouvrez le panneau Dosage.
- 4. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

5. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le dosage	Activé
Autoriser le double dosage	Désactivé
Corr. autom. d'erreur de jetée	Activé
Activer la purge	Désactivé
Autoriser le dosage temporisé	Désactivé
Type de dosage	1 palier tout-ou-rien

Conseil

Micro Motion recommande vivement d'appliquer une AOC (Automatic Overshoot Compensation). Une fois activée et étalonnée, l'AOC améliore la précision et la répétabilité du dosage.

6. Définissez Incrémentation sur l'option souhaitée.

Incrémentation contrôle la façon dont le total dosé est calculé et affiché.

Option	Description
Activé	Le total du dosage commence à 0 et augmente jusqu'à la Cible du dosage.
Désactivé	Le total du dosage commence à la Cible du dosage et réduit jusqu'à 0.

7. Définissez la Cible du dosage sur la quantité à laquelle le dosage sera terminé.

Entrez la valeur dans les unités de mesure configurées pour la Source du débit.

8. Définissez la Durée de dosage max sur le nombre de secondes auquel le dosage sera terminé.

Si la quantité à délivrer configurée n'a pas été atteinte normalement avant la fin de la durée spécifiée, le dosage est arrêté et une alarme Absence produit est générée. Pour désactiver la fonction de temporisation du dosage, définissez Durée de dosage max sur 0.

La valeur par défaut de Durée de dosage max est 0 (désactivé). La plage est comprise entre 0 seconde et 800 secondes.

9. Définissez Durée de dosage mesurée sur l'option souhaitée.

Durée de dosage mesurée contrôle la façon selon laquelle la durée du dosage est mesurée.

Option	Description
Arrêts du débit	La durée du dosage est incrémentée jusqu'à ce que le transmetteur dé- tecte que le débit est arrêté ou après la fermeture de la vanne.
Fermeture de la vanne	La durée du dosage est incrémentée jusqu'à ce que le transmetteur con- figurée la sortie tout-ou-rien comme requis pour fermer la vanne.

Postrequis

Options des dosages à un palier TOR :

- Configuration de la correction automatique d'erreur de jetée (AOC). Si l'AOC est activée, vérifiez qu'elle est correctement configurée et étalonnée pour votre application.
- Implémentation de la fonction de purge.
- Implémentation de la fonction de pompe.

6.1.2 Configurer un dosage à deux paliers TOR avec ProLink II

Configurez un dosage tout-ou-rien à deux étapes lorsque vous souhaitez doser un seul conteneur à partir de deux vannes.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Ouvrez le panneau Sortie tout-ou-rien.
 - b. Définir STOR1 précision sur Vanne principale.
 - c. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- d. Définir STOR2 précision sur Vanne secondaire.
- e. Définissez Polarité STOR2 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Ouvrez le panneau Débit.
 - b. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

c. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

d. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

e. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

- 3. Ouvrez le panneau Dosage.
- 4. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.
| Option | Description |
|-----------------|--|
| Débit massique | La variable de procédé de débit massique mesuré par le transmetteur |
| Débit volumique | La variable de procédé de débit volumique mesuré par le transmetteur |

5. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le dosage	Activé
Autoriser le double dosage	Désactivé
Corr. autom. d'erreur de jetée	Activé
Activer la purge	Désactivé
Autoriser le dosage temporisé	Désactivé
Type de dosage	2 paliers tout-ou-rien

Conseil

Micro Motion recommande vivement d'appliquer une AOC (Automatic Overshoot Compensation). Une fois activée et étalonnée, l'AOC améliore la précision et la répétabilité du dosage.

6. Définissez Incrémentation sur l'option souhaitée.

Incrémentation contrôle la façon dont le total dosé est calculé et affiché.

Option	Description
Activé	Le total du dosage commence à 0 et augmente jusqu'à la Cible du dosage.
Désactivé	Le total du dosage commence à la Cible du dosage et réduit jusqu'à 0.

7. Définissez Configurer par sur l'option souhaitée.

Configurer par contrôle la façon selon laquelle la temporisation de la commande est configurée.

Option	Description
% quantité à délivrer	 La temporisation d'ouverture et de fermeture de la vanne est configurée en pourcentage de la Cible du dosage. Par exemple : Ouverture de vanne = 0 % : la vanne s'ouvre lorsque le total du dosage actuel correspond à 0 % de la Cible du dosage. Fermeture de vanne = 90 % : la vanne se ferme lorsque le total du dosage actuel correspond à 90 % de la Cible du dosage.
Quantité	 La temporisation d'ouverture et de fermeture de la vanne est configurée en fonction de l'unité de mesure configurée. Par exemple : Ouverture de vanne = 0 g : la vanne s'ouvre lorsque le total du dosage actuel est de 0 g. Fermeture de vanne = 50 g : la vanne se ferme lorsque le total du dosage actuel est de 50 g inférieur à la Cible du dosage.

8. Définissez la Cible du dosage sur la quantité à laquelle le dosage sera terminé.

Entrez la valeur dans les unités de mesure configurées pour la Source du débit.

9. Définissez la Durée de dosage max sur le nombre de secondes auquel le dosage sera terminé.

Si la quantité à délivrer configurée n'a pas été atteinte normalement avant la fin de la durée spécifiée, le dosage est arrêté et une alarme Absence produit est générée.

Pour désactiver la fonction de temporisation du dosage, définissez Durée de dosage max sur 0.

La valeur par défaut de Durée de dosage max est 0 (désactivé). La plage est comprise entre 0 seconde et 800 secondes.

10. Définissez Durée de dosage mesurée sur l'option souhaitée.

Durée de dosage mesurée contrôle la façon selon laquelle la durée du dosage est mesurée.

Option	Description
Arrêts du débit	La durée du dosage est incrémentée jusqu'à ce que le transmetteur dé- tecte que le débit est arrêté ou après la fermeture de la vanne.
Fermeture de la vanne	La durée du dosage est incrémentée jusqu'à ce que le transmetteur con- figurée la sortie tout-ou-rien comme requis pour fermer la vanne.

11. Définissez Ouvrir primaire, Ouvrir secondaire, Fermer primaire et Fermer secondaire sur les options souhaitées.

Ces valeurs contrôlent le point du dosage auquel les vannes primaire et secondaire s'ouvrent et se ferment. Elles sont configurées par quantité ou pourcentage de la cible, tel que contrôlé par le paramètre Configurer par.

Ouvrir primaire ou Ouvrir secondaire doit être configuré pour ouvrir une vanne au début du dosage. Les deux peuvent être ouvertes au début du dosage si vous le souhaitez. Si vous configurez l'ouverture ultérieure d'une vanne, l'autre est automatiquement réinitialisée pour s'ouvrir au début du dosage.

Fermer primaire ou Fermer secondaire doit être configuré pour fermer une vanne à la fin du dosage. Les deux peuvent être fermées à la fin du dosage si vous le souhaitez. Si vous configurez la fermeture anticipée d'une vanne, l'autre est automatiquement réinitialisée pour se fermer à la fin du dosage.

Postrequis

Options des dosages à deux paliers TOR :

- Configuration de la correction automatique d'erreur de jetée (AOC). Si l'AOC est activée, vérifiez qu'elle est correctement configurée et étalonnée pour votre application.
- Implémentation de la fonction de purge.

Séquences d'ouverture et de fermeture de vanne pour les dosages TOR à deux paliers

Les figures suivantes illustrent l'ouverture et la fermeture des vannes principale et secondaire, contrôlées par la configuration de Ouverture grand débit, Ouverture petit débit, Fermer grand débit, et Fermer petit débit.

Ces illustrations considèrent que le dosage s'effectue du début à la fin sans interruption.

Effets du Mode de configurationsur l'ouverture et la fermeture de la vanne

Le Mode de configuration contrôle la façon dont les valeurs Ouverture grand débit, Ouverture petit débit, Fermeture grand débit, et Fermeture petit débit sont configurées et appliquées.

- Lorsque le Mode de configuration = % Cible, le transmetteur ajoute les valeurs d'ouverture et de fermeture de vanne configurées à 0 %.
- Lorsque le Mode de configuration = Quantité, le transmetteur ajoute les valeurs d'ouverture configurées à 0 et soustrait les valeurs de fermeture de vanne configurées de la Quantité à délivrer.

Exemple : Mode de configuration et commandes d'ouverture/fermeture de la vanne

Quantité à délivrer = 200 g. Vous voulez que la vanne à grand débit s'ouvre au début du conditionnement et se ferme à la fin du conditionnement. Vous voulez que la vanne à petit débit s'ouvre après que 10 g ont été délivrés, et se ferme après que 190 g ont été délivrés. Voir *Tableau 10-1* pour découvrir les paramètres qui produisent ce résultat.

Mode de configuration	Valeurs d'ouverture et de fermeture de la vanne
% quantité à délivrer	 Ouverture grand débit = 0 % Ouverture petit débit = 5 % Fermeture petit débit = 95 % Fermeture grand débit = 100 %
Quantité	 Ouverture grand débit = 0 g Ouverture petit débit = 10 g Fermeture petit débit = 10 g Fermeture grand débit = 0 g

Tableau 10-1: Mode de configuration et configuration de la vanne

6.1.3 Configurer un dosage temporisé avec ProLink II

Configurez un dosage minuté à une étape lorsque vous souhaitez doser un seul conteneur à partir d'une seule vanne. La vanne restera ouverte pendant le nombre de secondes indiqué.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Choisissez ProLink > Configuration > Sortie tout-ou-rien.
 - b. Définir STOR1 précision sur Vanne principale.
 - c. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Ouvrez le panneau Débit.
 - b. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

c. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

d. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

e. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

3. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le dosage	Activé
Incrémentation	Activé
Autoriser le double dosage	Désactivé
Corr. autom. d'erreur de jetée	Désactivé
Activer la purge	Désactivé
Autoriser le dosage temporisé	Activé
Type de dosage	1 palier tout-ou-rien

4. Définissez la Durée cible sur le nombre de secondes d'exécution du dosage.

Postrequis

L'option suivante est disponible pour les dosages temporisés :

Implémentation de la fonction de purge.

6.1.4 Configurer une tête de dosage double avec ProLink II

Configurez un dosage à double tête de dosage minuté lorsque vous souhaitez doser deux conteneurs en alternance à l'aide de deux têtes de dosage. Chaque vanne sera ouverte jusqu'à ce que la Cible du dosage soit atteinte.

```
Important
```

La Cible du dosage configurée s'applique aux deux têtes de dosage.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Choisissez ProLink > Configuration > Sortie tout-ou-rien.
 - b. Définir STOR1 précision sur Vanne principale.
 - c. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- d. Définir STOR2 précision sur Vanne secondaire.
- e. Définissez Polarité STOR2 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Ouvrez le panneau Débit.
 - b. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

c. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

d. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

e. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

- 3. Ouvrez le panneau Dosage.
- 4. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

5. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le dosage	Activé
Incrémentation	Activé
Autoriser le double dosage	Activé
Corr. autom. d'erreur de jetée	Activé
Activer la purge	Désactivé
Autoriser le dosage temporisé	Désactivé
Type de dosage	1 palier tout-ou-rien

Conseil

Micro Motion recommande vivement d'appliquer une AOC (Automatic Overshoot Compensation). Une fois activée et étalonnée, l'AOC améliore la précision et la répétabilité du dosage.

6. Définissez la Cible du dosage sur la quantité à laquelle le dosage sera terminé.

Remarque

La Cible du dosage configurée s'applique aux deux têtes de dosage.

7. Définissez la Durée de dosage max sur le nombre de secondes auquel le dosage sera terminé.

Si la quantité à délivrer configurée n'a pas été atteinte normalement avant la fin de la durée spécifiée, le dosage est arrêté et une alarme Absence produit est générée.

Pour désactiver la fonction de temporisation du dosage, définissez Durée de dosage max sur 0.

La valeur par défaut de Durée de dosage max est 0 (désactivé). La plage est comprise entre 0 seconde et 800 secondes.

8. Définissez Durée de dosage mesurée sur l'option souhaitée.

Durée de dosage mesurée contrôle la façon selon laquelle la durée du dosage est mesurée.

Option	Description
Arrêts du débit	La durée du dosage est incrémentée jusqu'à ce que le transmetteur dé- tecte que le débit est arrêté ou après la fermeture de la vanne.
Fermeture de la vanne	La durée du dosage est incrémentée jusqu'à ce que le transmetteur con- figurée la sortie tout-ou-rien comme requis pour fermer la vanne.

Postrequis

Options pour les dosages à tête de dosage double :

 Configuration de la correction automatique d'erreur de jetée (AOC). Si l'AOC est activée, vérifiez qu'elle est correctement configurée et étalonnée pour votre application.

6.1.5 Configurer un dosage temporisé à tête de dosage double avec ProLink II

Configurez un dosage à double tête de dosage lorsque vous souhaitez doser deux conteneurs en alternance à l'aide de deux têtes de dosage. Chaque vanne restera ouverte pendant le nombre de secondes indiqué.

Important

La Durée cible configurée s'applique aux deux têtes de dosage.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Choisissez ProLink > Configuration > Sortie tout-ou-rien.
 - b. Définir STOR1 précision sur Vanne principale.
 - c. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- d. Définir STOR2 précision sur Vanne secondaire.
- e. Définissez Polarité STOR2 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Ouvrez le panneau Débit.
 - b. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

c. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

d. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

e. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

3. Ouvrez le panneau Dosage.

4. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

5. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le dosage	Activé
Incrémentation	Activé
Autoriser le double dosage	Activé
Corr. autom. d'erreur de jetée	Désactivé
Activer la purge	Désactivé
Autoriser le dosage temporisé	Activé
Type de dosage	1 palier tout-ou-rien

6. Définissez la Durée cible sur le nombre de secondes d'exécution du dosage.

Remarque La Durée cible configurée s'applique aux deux têtes de dosage.

6.2 Configurer les options de dosage avec ProLink II

Selon le type de dosage, vous pouvez configurer et implémenter une AOC, la fonction de purge ou la fonction de pompage.

6.2.1 Configurer et mettre en œuvre la correction automatique d'erreur de jetée (AOC) avec ProLink II

La correction automatique d'erreur de jetée (AOC) est utilisée pour ajuster la temporisation du dosage afin de compenser le temps requis pour transmettre la commande de fermeture de la vanne afin que celle-ci se ferme complètement.

Prérequis

Avant de configurer l'AOC, assureez-vous que tous les autres paramètres de dosage sont correctement configurés.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Choisissez ProLink > Configuration > Dosage.
- 2. Choisissez le type d'AOC que vous voulez mettre en œuvre.

Option	Description
Fixe	Fixe : la vanne se fermera au point défini par la Quantité à délivrer moins la valeur spécifiée pour le paramètre Valeur fixe corr. erreur jetée. Utilisez cette option uniquement si la valeur "d'avertissement" est déjà connue.
Sur-dos- age	Définit la direction utilisée par l'algorithme AOC pour approcher de la quantité à délivrer. L'algorithme AOC commence par estimer une valeur de sur-dosage et réduit le sur-dosage par des dosages d'ajustage successifs.
Sous-dos- age	Définit la direction utilisée par l'algorithme AOC pour approcher de la quantité à délivrer. L'algorithme AOC commence par estimer une valeur de sous-dosage et réduit le sous-dosage par des dosages d'ajustage successifs.

Conseil

L'option Fixe n'est généralement pas utilisée. Si vous choisissez Fixe, le transmetteur fonctionnera comme un prédéterminateur hérité. Dans les applications classiques, les autres options AOC fournissent une précision et une répétabilité améliorées.

Restriction

Les optionsFixe et Sur-dosage ne sont pas prises en charge pour les dosages à tête double.

- 3. Pour mettre en oeuvre une AOC fixe :
 - a. Désactiver Activer AOC.
 - b. Régler Algorithme AOC sur Fixe
 - c. Régler Valeur fixe corr. erreur jetée sur la valeur désirée.

La valeur par défaut est 0, mesurée en unités de procédé.

Le transmetteur fermera la vanne lorsque le total dosé actuel sera égal à la Quantité à délivrer moins la valeur prévue (en unités de procédé).

- 4. Pour mettre en oeuvre Sur-dosage ou Sous-dosage :
 - a. Assurez-vous que la case Activer AOC est cochée.
 - b. Réglez Algorithme AOC sur Sur-dosage ou Sous-dosage.
 - c. Réglez nombre de dosages AOC sur le nombre de dosages qui seront utilisés pour l'ajustage AOC.

La valeur par défaut est 10. La plage s'étend de 2 à 32.

Conseil

Micro Motion recommande d'utiliser la valeur par défaut, à moins que vous ayez des exigences particulières liées à vos applications.

Important

Ne modifiez pas les valeurs de Limite de modification AOC ni de Taux de convergence AOC à moins que vous ne travailliez avec le service client de Micro Motion. Ces paramètres sont utilisés pour ajuster le fonctionnement de l'algorithme AOC aux exigences particulières liées aux applications.

Postrequis

Si vous avez réglé l'Algorithme AOC sur Sur-dosage ou Sous-dosage, vous devez exécuter l'ajustage AOC.

Effectuer un ajustage AOC à l'aide de ProLink II

L'ajustage AOC est utilisé pour calculer la valeur d'AOC (Correction automatique d'erreur de jetée) des données réelles du dosage. Si vous avez réglé l'Algorithme AOC sur Sur-dosage ou Sous-dosage, vous devez exécuter l'ajustage AOC.

Cet ajustage peut être réalisé de deux manières :

- Standard : l'ajustage est effectué manuellement. Le coefficient AOC est calculé à partir des données de dosage obtenues pendant cet ajustage, et le même coefficient AOC est appliqué jusqu'au prochain ajustage.
- Continue : l'ajustage est exécuté continuellement et automatiquement, et le coefficient AOC est mis à jour en continu, sur la base des données de dosage de la dernière série de dosages.

Conseil

Pour des procédés stables, Micro Motion recommande l'ajustage AOC standard. Si nécessaire, testez les deux méthodes et choisissez celle qui fournit les meilleurs résultats.

Exécuter l'ajustage de la correction automatique d'erreur de jetée standard

L'ajustage AOC standard est utilisé pour générer un coefficient AOC constant.

Prérequis

Le Nombre de dosages AOC doit être correctement défini. Micro Motion recommande d'utiliser la valeur par défaut (10), à moins que vous ayez des exigences particulières liées à vos applications.

Seuil de coupure du débit massique ou Seuil de coupure du débit volumique doivent être réglés correctement en fonction de votre environnement.

- Si Origine d'écoulement est réglé sur Débit massique, voir Section 15.2.3.
- Si Origine d'écoulement est réglé sur Débit volumique, voir *Section* 15.3.2.

Votre système doit être prêt à exécuter des dosages, et vous devez savoir comment faire.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Choisissez ProLink > Exécuter le doseur.
- 2. Pour calibrer la vanne principale (tous types de dosages) :
 - a. Cliquez sur Démarrer ajustage AOC.
 - b. Exécuter deux ou plusieurs dosages d'ajustage jusque'au nombre indiqué dans le Nombre de dosages AOC.

Remarque

Vous pouvez exécuter plusieurs dosages d'ajustage si vous le souhaitez. Le coefficient de correction est calculé à partir des dosages les plus récents.

Conseil

Généralement, les premiers dosages sont un peu sur-dosés ou sous-dosés en raison des paramètres d'usine. Pendant l'ajustage, les dosages convergent vers la Quantité à délivrer.

- c. Lorsque les totaux dosés sont satisfaisants, cliquez sur Enregistrer ajustage AOC.
- 3. Pour ajuster la vanne secondaire (dosages à tête de dosage double) :
 - a. Cliquez sur Démarrer ajustage AOC secondaire.
 - b. Exécuter deux ou plusieurs dosages d'ajustage jusque'au nombre indiqué dans le Nombre de dosages AOC.

Le transmetteur exécute automatiquement des dosages via la vanne secondaire.

Remarque

Vous pouvez exécuter plusieurs dosages d'ajustage si vous le souhaitez. Le coefficient de correction est calculé à partir des dosages les plus récents.

Conseil

Généralement, les premiers dosages sont un peu sur-dosés ou sous-dosés en raison des paramètres d'usine. Pendant l'ajustage, les dosages convergent vers la Quantité à délivrer.

c. Lorsque les totaux dosés sont satisfaisants, cliquez sur Enregistrer ajustage AOC secondaire.

Le coefficient AOC actuel est affiché dans la fenêtre Démarrer le doseur. Si vous exécutez un dosage par tête de dosage double, la fenêtre Démarrer le doseur affiche le coefficient AOC des vannes principale et secondaire. Ces coefficients seront appliqués tant que l'AOC sera activée.

Remarque

En ce qui concerne les dosages TOR 2 paliers, la valeur d'AOC est appliquée à la vanne qui se ferme lorsque l'objectif est atteint. Si le dosage est configuré pour fermer les deux vannes lorsque l'objectif est atteint, la valeur d'AOC est appliquée aux deux.

Conseil

Micro Motion recommande de répéter l'ajustage AOC dans les cas suivants :

- Un élément du système de mesurage a été remplacé ou ajusté.
- Le débit change de façon importante.
- La précision du dosage est sensiblement inférieure aux attentes.
- Le Seuil de coupure du débit massique ou le Seuil de coupure du débit volumique ont été modifiés.

Configurer l'ajustage continu de la correction automatique d'erreur de jetée

L'ajustage AOC continu est utilisé pour mettre à jour le coefficient AOC en continu, sur la base des données de dosage de la dernière série de dosages.

Prérequis

Le Nombre de dosages AOC doit être correctement défini. Micro Motion recommande d'utiliser la valeur par défaut (10), à moins que vous ayez des exigences particulières liées à vos applications.

Votre système doit être prêt à exécuter des dosages, et vous devez savoir comment faire.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Choisissez ProLink > Exécuter le doseur.
- 2. Pour ajuster la vanne principale (tous types de dosages), cliquez sur Démarrer l'ajustage AOC. Pour ajuster la vanne secondaire (tête de dosage double), cliquez sur Démarrer l'ajustage AOC secondaire.

Vous pouvez paramétrer un ajustage AOC pour chaque vanne individuellement ou pour les deux.

3. Commencer les dosages de production.

Le transmetteur recalcule le(s) coefficient(s) AOC après chaque dosage, sur la base de *x* dosages où *x* est le nombre indiqué dans Nombre de dosages AOC. Les valeurs actuelles sont affichées dans la fenêtre Exécuter le doseur. Si la configuration ou les conditions du procédé ont changé, l'ajustage AOC continu compense ce changement. Cependant, l'ajustement prend place après plusieurs dosages ; ainsi, l'AOC demande quelques dosages pour rattraper les valeurs.

Conseil

À tout instant pendant l'exécution de l'ajustage de la correction automatique d'erreur de jetée standard, vous pouvez cliquer sur Enregistrer l'ajustage AOC ou sur Enregistrer l'ajustage AOC secondaire. Le coefficient AOC actuel sera enregistré et appliqué à tous les dosages suivants via la vanne correspondante. En d'autres termes, cette action change donc l'ajustage continu de l'erreur de jetée de cette vanne en ajustage standard.

6.2.2 Configurer la fonctionnalité de purge avec ProLink II

La fonction Purge est utilisée pour contrôler une vanne auxiliaire pouvant servir à des tâches autres que le dosage. Par exemple, elle peut servir à l'ajout d'eau ou de gaz dans le conteneur après le dosage, ou au "remplissage." Le débit dans la vanne auxiliaire n'est pas mesuré par le transmetteur. Vous pouvez configurer la fonction de purge pour la commande de purge automatique ou manuelle. Si vous choisissez la commande automatique, la vanne auxiliaire est ouverte après chaque dosage, puis fermée une fois la durée de purge configurée écoulée.

Restriction

La fonction de purge n'est pas prise en charge dans les dosages à double tête de dosage ou les dosages minutés à double tête de dosage.

Prérequis

Les sorties tout-ou-rien doivent être câblées de manière appropriée en fonction du type et des options de votre dosage.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Configurez le canal B pour fonctionner en tant que sortie tout-ou-rien :
 - a. Choisissez ProLink > Configuration > Canal.

- b. Définir Type d'entrée/sortie du canal B sur Sortie TOR.
- c. Ouvrez le panneau Sortie tout-ou-rien.
- d. Définir Affectation STOR1 sur Prédéterminateur : Vanne de purge.
- e. Définissez Polarité STOR1 en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

f. Définissez Action sur défaut STOR1 en fonction de votre installation.

Option	Description
Valeur haute	La sortie tout-ou-rien est définie sur Marche (ON) (ouver- ture de la vanne) en cas de défaut.
Valeur basse	La sortie tout-ou-rien est définie sur Arrêt (OFF) (ferme- ture de la vanne) en cas de défaut.
Aucune	Aucune action n'est entreprise en cas de défaut. La sortie tout-ou-rien reste dans l'état dans lequel elle était avant le défaut.

- 2. Configurez la purge :
 - a. Choisissez ProLink > Configuration > Dosage.
 - b. Activez Activer purge.
 - c. Définissez le Mode purge sur l'option souhaitée.

Option	Description
Auto	Une purge est automatiquement exécutée après chaque dosage.
Manuel	Les purges doivent être démarrées et arrêtées man- uellement.

Conseil

Lorsque le Mode purge est défini sur Auto, une commande manuelle de la vanne de purge est toujours possible. Vous pouvez démarrer une purge manuellement et l'arrêter manuellement, ou vous pouvez laisser le soin au transmetteur de l'arrêter une fois la Durée de purge écoulée. Si une purge est démarrée automatiquement, vous pouvez l'arrêter manuellement. d. Si vous définissez le Mode purge sur Auto, définissez le Délai de purge sur le nombre de secondes que le transmetteur devra attendre, une fois le dosage terminé, avant d'ouvrir la vanne de purge.

La valeur par défaut du Délai de purge est de 2 secondes.

e. Si vous définissez le Mode purge sur Auto, définissez la Durée de purge sur le nombre de secondes pendant lesquelles le transmetteur devra maintenir la vanne de purge ouverte.

La valeur par défaut de la Durée de purge est de 1 seconde. La plage est comprise entre 0 seconde et 800 secondes.

Conseil

Le dosage suivant ne peut pas commencer tant que la vanne de purge n'est pas fermée.

6.2.3 Configurer la fonctionnalité de pompe avec ProLink II

La fonction Pompe est utilisée pour augmenter la pression pendant le dosage en démarrant une pompe en amont juste avant de démarrer le dosage.

Restriction

La fonction de purge n'est pas prise en charge dans les dosages tout-ou-rien à deux étapes, les dosages à double tête de dosage, les dosages minutés et les dosages minutés à double tête de dosage.

Prérequis

Les sorties tout-ou-rien doivent être câblées de manière appropriée en fonction du type et des options de votre dosage.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Ouvrez le panneau Sortie tout-ou-rien.
 - b. Définir STOR2 précision sur Pompe.
 - c. Définissez Polarité STOR2 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

2. Choisissez ProLink > Configuration > Dosage.

3. Définissez le Délai pompe à vanne sur le nombre de secondes d'exécution de la pompe avant l'ouverture de la vanne.

La valeur par défaut est de 10 secondes. La plage est comprise entre 0 seconde et 30 secondes.

Lorsque la commande Commencer le dosage est reçue, le transmetteur démarre la pompe, attend le nombre de secondes spécifié dans Délai pompe à vanne, puis ouvre la vanne. La pompe fonctionne jusqu'à ce que le dosage soit terminé.

6.3 Configurer le contrôle de dosage avec ProLink II (en option)

Dans un environnement de production classique, le contrôle de dosage (démarrage et arrêt du dosage) est effectué par l'hôte ou l'API. Si vous le souhaitez, vous pouvez régler le système pour démarrer, arrêter, interrompre et reprendre le dosage depuis l'entrée TOR (si disponible). Vous pouvez également définir un évènement pour démarrer, arrêter, interrompre et reprendre le dosage.

6.3.1 Configurer l'entrée TOR pour le contrôle du dosage avec ProLink II

Si le canal B est disponible, vous pouvez le configurer comme une entrée TOR et l'utiliser pour démarrer et arrêter le dosage, ou pour interrompre et reprendre un dosage en cours. Vous pouvez également le configurer pour remettre à zéro le total partiel massique, le total volumique partiel ou tous les totaux. Lorsque l'entrée TOR est activée, toutes les actions affectées seront performées.

Prérequis

Le canal B doit être câblé pour fonctionner en tant qu'entrée tout-ou-rien.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Configurez le canal B pour fonctionner en tant qu'entrée tout-ou-rien.
 - a. Choisissez ProLink > Configuration > Canal.
 - b. Définir Type d'entrée/sortie du canal B sur Entrée TOR.
- 2. Affectez des actions de contrôle à l'entrée TOR.
 - a. Ouvrez le panneau Entrée tout-ou-rien.
 - b. Sélectionnez l'action (les actions) à effectuer lorsque l'entrée TOR est activée.

Action	Description	Commentaires
Démarrer le dosage	Démarre un dosage avec la configuration de dosage actuelle. Le total dosé est automati- quement remis à zéro au début du dosage.	Si un dosage est en cours, la commande est ig- norée. Si une purge automatique est en cours, les fonctions de démarrage de dosage sont exé- cutées lorsque la purge est complète.

Action	Description	Commentaires
Arrêter le dosage	Arrêt le dosage actuel et exécute les fonctions d'arrêt de dosage. Le dosage ne peut pas être redémarré.	Exécuté quand un dosage est en cours ou in- terrompu, et pendant une purge ou une tem- porisation de purge. Pour les dosages à tête de dosage double et les dosages temporisés à tête de dosage dou- ble, la commande arrête toujours le dosage actif en cours.
Interrompre le dosage	Dosages temporisés, dosages à tête de dosage double, et dosages temporisés à tête de dos- age double : voir Arrêter le dosage.	
	Dosages TOR 1 palier et 2 paliers : interrompt temporairement le dosage. Le dosage peut être redémarré si le total dosé n'a pas atteint la Quantité à délivrer.	Si une purge ou une temporisation de purge sont en cours, la commande est ignorée.
Redémarrer le dosage	Redémarre un dosage qui a été interrompu. Le comptage reprend au total dosé ou au mo- ment où il se trouvait lorsque le dosage a été interrompu.	Exécuté uniquement lorsqu'un dosage TOR 1 palier ou 2 paliers a été interrompu. Ignoré dans tous les autres cas.
RAZ du total partiel en masse	Remise à zéro de la valeur du totalisateur parti- el en masse.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.
RAZ du total partiel en volume	Remise à zéro de la valeur du totalisateur parti- el en volume.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.
RAZ de tous les totaux	RAZ de la valeur des totalisateurs partiels en masse et en volume, et du total dosé.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.

- c. Pour chaque action sélectionnée, ouvrez la liste déroulante et sélectionnez Entrée TOR 1.
- 3. Définissez Polarité ETOR1 en fonction de votre installation.

Vérifiez que le signal de Marche (ON) envoyé par l'entrée tout-ou-rien est bien interprété (Marche), et vice versa.

Option	Tension appliquée entre les bornes	Lecture du transmetteur
Niveau haut actif	3 à 30 Vcc	Marche
	<0,8 Vcc	Arrêt
Niveau bas actif	<0,8 Vcc	Marche
	3 à 30 Vcc	Arrêt

6.3.2 Configurer un événement pour contrôler un dosage avec ProLink II

Vous pouvez affecter un évènement pour démarrer, arrêter, interrompre ou reprendre un dosage. Vous pouvez également affecter l'évènement pour remettre à zéro le total partiel massique, le total volumique partiel ou tous les totaux. Lorsque l'évènement s'active (ON), toutes les actions affectées s'exécutent.

Prérequis

Tous les évènements que vous souhaitez utiliser doivent être configurés. Vous pouvez les configurer avant ou après leur avoir attribué des actions.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Affectez des actions de contrôle du dosage à l'évènement.
 - a. Choisissez ProLink > Configuration > Evénements tout-ou-rien.
 - b. Identifez l'action (les actions) à exécuter lorsque l'Evènement TOR 1 survient.

Action	Description	Commentaires
Démarrer le dosage	Démarre un dosage avec la configuration de dosage actuelle. Le total dosé est automati- quement remis à zéro au début du dosage.	Si un dosage est en cours, la commande est ig- norée. Si une purge automatique est en cours, les fonctions de démarrage de dosage sont exé- cutées lorsque la purge est complète.
Arrêter le dosage	Arrêt le dosage actuel et exécute les fonctions d'arrêt de dosage. Le dosage ne peut pas être redémarré.	Exécuté quand un dosage est en cours ou in- terrompu, et pendant une purge ou une tem- porisation de purge. Pour les dosages à tête de dosage double et les dosages temporisés à tête de dosage dou- ble, la commande arrête toujours le dosage actif en cours.
Interrompre le dosage	Dosages temporisés, dosages à tête de dosage double, et dosages temporisés à tête de dos- age double : voir Arrêter le dosage.	
	Dosages TOR 1 palier et 2 paliers : interrompt temporairement le dosage. Le dosage peut être redémarré si le total dosé n'a pas atteint la Quantité à délivrer.	Si une purge ou une temporisation de purge sont en cours, la commande est ignorée.
Redémarrer le dosage	Redémarre un dosage qui a été interrompu. Le comptage reprend au total dosé ou au mo- ment où il se trouvait lorsque le dosage a été interrompu.	Exécuté uniquement lorsqu'un dosage TOR 1 palier ou 2 paliers a été interrompu. Ignoré dans tous les autres cas.
RAZ du total partiel en masse	Remise à zéro de la valeur du totalisateur parti- el en masse.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.

Action	Description	Commentaires
RAZ du total partiel en volume	Remise à zéro de la valeur du totalisateur parti- el en volume.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.
RAZ de tous les totaux	RAZ de la valeur des totalisateurs partiels en masse et en volume, et du total dosé.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.

2. Recommencez pour les Évènements TOR 2 à 5.

Exemple : Procédé de surveillance des évènements et interruption ou arrêt du dosage

La plage acceptable de masse volumique pour votre procédé est de 1,1 g/cm³ à 1,12 g/cm³. La plage de température acceptable est de 20 °C à 25 °C. Vous souhaitez interrompre le dosage si la masse volumique sort de cette plage. Vous souhaitez arrêter le dosage si la température sort de cette plage.

Configuration de l'événement :

- Événement TOR 1 :
 - Type d'événement : Hors plage
 - Grandeur mesurée : Masse volumique
 - Valeur seuil bas (A) : 1,1 g/cm³
 - Valeur seuil haut (B) : 1,12 g/cm³
- Événement TOR 2 :
 - Type d'événement : Hors plage
 - Grandeur mesurée : Température
 - Valeur seuil bas (A) : 20 °C
 - Valeur seuil haut (B): 25 °C

Affectations d'action :

- Interruption du dosage : Évènement TOR 1
- Arrêt du dosage : Évènement TOR 2

Postrequis

Si vous avez affecté des actions à des évènements qui ne sont pas configurés, vous devez configurer ces évènements avant de mettre en œuvre ce mode de contrôle des dosages.

6.3.3 Actions multiples affectées à un évènement ou une entrée tout ou rien

Si plusieurs actions sont affectées à un évènement ou une entrée tout ou rien, le transmetteur n'effectue que les actions appropriées dans la situation actuelle. Si deux ou plusieurs actions sont incompatibles, le transmetteur effectue les actions selon le modèle de priorité défini dans son micrologiciel.

Les exemples suivants montrent trois configurations recommandées par Micro Motion, et deux configurations qui ne sont pas recommandées.

Exemple : Utilisation d'un évènement ou d'une entrée tout ou rien pour démarrer et achever le dosage (recommandé)

Affectations d'action :

- Démarrage du dosage
- Arrêt du dosage
- RAZ du total partiel en masse
- RAZ du total partiel en volume

Résultat de l'activation :

- Si aucun dosage n'est en cours, les compteurs de masse et de volume sont remis à zéro et un dosage démarre.
- Si un dosage est en cours, il est arrêté et les compteurs de masse et de volume sont remis à zéro.

Exemple : Utilisation d'un évènement ou d'une entrée tout ou rien pour démarrer, mettre en pause et reprendre le dosage (recommandé)

Affectations d'action :

- Démarrage du dosage
- Interruption du dosage
- Redémarrage du dosage

Résultat de l'activation :

- Si aucun dosage n'est en cours, un dosage démarre.
- Si un dosage et en cours et n'est pas en pause, il est mis en pause.
- Si un dosage est en pause, il redémarre.

Exemple : Utilisation d'une entrée tout ou rien pour démarrer le dosage et remettre le débit volumique à zéro (recommandé)

Affectations d'action :

- Démarrage du dosage
- RAZ du total partiel en volume

Résultat de l'activation :

- Si aucun dosage n'est en cours, le compteur de volume est remis à zéro et un dosage démarre.
- Si un dosage est en cours, le compteur de volume est remis à zéro.

Conseil

Cette configuration est utile si vous avez configuré votre dosage en termes de masse, mais voulez également connaître le total en volume du dosage. Dans ce cas, n'activez pas l'entrée tout ou rien tant que le dosage est en cours. À la fin du dosage, relevez le total en volume. Puis passez au dosage suivant.

Exemple : Affectations incompatibles (non recommandées)

Affectations d'action :

- Démarrage du dosage
- Arrêt du dosage
- Interruption du dosage
- Redémarrage du dosage

Résultat de l'activation :

- Si aucun dosage n'est en cours, un dosage démarre.
- Si un dosage est en cours, il est arrêté.

Dans cet exemple, l'évènement ou l'entrée tout ou rien ne mettra jamais le dosage en pause parce que l'action Arrêter le dosage est prioritaire.

Exemple : Affectations incompatibles (non recommandées)

Affectations d'action :

- Arrêt du dosage
- RAZ de tous les totaux

Résultat de l'activation :

- Si aucun dosage n'est en cours, tous les totaux, y compris le total dosé, sont remis à zéro.
- Si un dosage est en cours, il est arrêté et tous les totaux, y compris le total dosé, sont remis à zéro.

Avec cette combinaison, le total dosé est remis à zéro avant que les données puissent être relevées.

6.4 Configurer les rapports de dosage avec ProLink II (en option)

Vous pouvez configurer le transmetteur pour qu'il signaler l'état activé/désactivé (ON/OFF) du dosage sur le Canal B (si disponible), ainsi que le pourcentage de quantité délivrée sur la sortie analogique.

6.4.1 Configurer Canal B pour fonctionner en tant que sortie TOR et signaler l'état activé/désactivé (ON/OFF) de dosage avec ProLink II

Si le Canal B est disponible, vous pouvez l'utiliser pour signaler l'exécution en cours ou non d'un dosage.

Prérequis

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Le canal B doit être câblé pour fonctionner en tant que sortie tout-ou-rien.

Procédure

- 1. Choisissez ProLink > Configuration > Canal.
- 2. Définir Type d'entrée/sortie du canal B sur Sortie TOR.
- 3. Ouvrez le panneau Sortie tout-ou-rien.
- 4. Définir Affectation STOR1 sur Prédéterminateur : Livraison/dosage en cours
- 5. Définissez Polarité STOR1 en fonction de votre installation.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

6. Définissez Action sur défaut STOR1 en fonction de votre installation.

Option	Description
Valeur haute	La sortie tout-ou-rien est définie sur Marche (ON) (ouverture de la vanne) en cas de défaut.
Valeur basse	La sortie tout-ou-rien est définie sur Arrêt (OFF) (fermeture de la vanne) en cas de défaut.
Aucune	Aucune action n'est entreprise en cas de défaut. La sortie tout-ou-rien reste dans l'état dans lequel elle était avant le défaut.

Conseil

Lorsque la sortie tout-ou-rien est utilisée pour signaler le dosage, Micro Motion recommande de régler Action sur défaut STOR1 sur Aucune.

6.4.2 Configurer la sortie analogique pour signaler le pourcentage de dosage livré avec ProLink II

Vous pouvez configurer la sortie analogique pour qu'elle signale le pourcentage de Cible du dosage délivré. Dans une configuration type, le courant augmente de 4 mA à 20 mA à mesure que le total du dosage augmente entre 0 et 100 %.

Prérequis

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Choisissez ProLink > Configuration > Sortie analogique.
- 2. Définir Variable secondaire est sur Prédéterminateur : Pourcentage dosage.
- 3. Définir Valeur basse d'échelle (LRV) sur le pourcentage de dosage représenté par 4 mA.

- 4. Définir Valeur haute d'échelle (URV) sur le pourcentage de dosage représenté par 20 mA.
- 5. Régler le paramètre Action sur défaut SA sur l'option souhaitée.

Si Valeur basse d'échelle (LRV) est définit sur 0 % et Valeur haute d'échelle (URV) sur 100% : lorsque le dosage démarre, la sortie analogique génère un courant de 4 mA (0 % de la Cible du dosage). Le courant augmente proportionnellement au total de dosage, jusqu'à un courant de 20 mA (100 % de la Cible du dosage).

Remarque

Si Sens d'écoulement est défini sur Bidirectionnel ou Bidirectionnel inverse, le total du dosage peut diminuer dans certaines conditions d'écoulement. Dans ce cas, le courant généré par la sortie analogique diminue proportionnellement.

7

Fonctionnement du dosage avec ProLink II

Sujets couverts dans ce chapitre:

- Configurer un dosage contrôlé par vanne intégrée avec ProLink II
- Effectuer une purge manuelle à l'aide de ProLink II
- Nettoyer En Place (NEP) avec ProLink II
- Surveiller et analyser les opérations de dosage avec ProLink II

7.1 Configurer un dosage contrôlé par vanne intégrée avec ProLink II

Vous pouvez utiliser ProLink II pour démarrer un dosage, contrôler un dosage, interrompre et reprendre le dosage, et pour terminer un dosage.

Prérequis

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Choisissez ProLink > Exécuter le doseur.
- (En option) Si vous le souhaitez, entrez une autre valeur pour Cible du dosage (dosages tout-ou-rien à un palier, dosages tout-ou-rien à 2 paliers ou dosages à deux têtes de dosage), ou pour Durée cible (dosages temporisés ou dosages temporisés à deux têtes de dosage).
- 3. (En option) Si l'AOC est activée, vous pouvez entrer une autre valeur pour Coeff AOC.

Conseil

En production, Micro Motion recommande de conserver la valeur de Coeff AOC déterminée lors de l'étalonnage AOC. Si vous effectuez des dosages d'étalonnage AOC et qu'une valeur de Coeff AOC d'un appareil similaire est disponible, vous pouvez utiliser cette valeur comme première approximation sur l'appareil en cours. Ceci peut être utile si vous souhaitez empêcher un déversement.

4. Cliquez sur Commencer le dosage.

Le total du dosage est automatiquement remis à zéro et la ou les vannes sont ouvertes. L'indicateur Dosage en cours doit être Activé. S'il ne l'est pas et si l'indicateur Démarrage non OK ou l'indicateur Débit AOC trop élevé est Activé, résolvez la configuration du dosage et réessayez.

5. Contrôlez le dosage à l'aide des valeurs Total dosé et Pourcentage dosage et des indicateurs Etat du dosage.

Valeurs du dosage en cours	Description
Total dosé	 Quantité de dosage au moment actuel. Cette valeur est affectée par Incrémentation : Si Incrémentation est activé, le Total dosé commence à 0 et augmente jusqu'à la Cible du dosage. Si Incrémentation est désactivé, le Total dosé commence à la Cible du dosage et diminue jusqu'à 0.
Pourcentage dosage	Pourcentage de Cible du dosage mesuré jusqu'à l'heure ac- tuelle. Cette valeur n'est pas affectée par Incrémentation.

Indicateur Etat du dosage	Description
Dosage en cours	Un dosage est actuellement en cours d'exécution via la vanne principale. Cet indicateur est actif même lorsque le dosage est interrompu.
Dosage secondaire en cours	Un dosage est actuellement en cours d'exécution via la vanne secondaire. Cet indicateur est actif même lorsque le dosage est interrompu. Il s'applique aux dosages à deux têtes de dosage uniquement.
Durée maxi du dosage dépassée	La durée du dosage actuel a dépassé le temps spécifié pour le paramètre Durée maxi du dosage. Le dosage a été arrêté.
Vanne principale	La vanne principale est ouverte.
Vanne secondaire	La vanne secondaire est ouverte.
Pompe	La pompe est en cours d'exécution.
Purge en cours	Un cycle de purge a été démarré automatiquement ou man- uellement.
Phase tempo de purge	Un cycle de purge automatique est en cours d'exécution et se trouve actuellement dans la phase de temporisation en- tre la fin du dosage et le début de la purge.
Vanne de purge	La vanne de purge est ouverte.

6. (En option) Interrompez le dosage si vous le souhaitez.

Lorsque le dosage est interrompu, vous pouvez modifier la valeur de Cible actuelle, terminer le dosage manuellement avec Terminer le dosage ou redémarrer le dosage avec Reprendre le dosage. Le dosage reprend à la valeur actuelle de Total dosé et de Pourcentage dosage.

Restriction

Vous ne pouvez pas interrompre un dosage temporisé ou un dosage temporisé à deux têtes de dosage.

Important

Pour les dosages tout-ou-rien à 2 paliers, les effets de l'interruption et de la reprise du dosage dépendent de la temporisation des commandes d'ouverture et de fermeture de la vanne et du point auquel le dosage est interrompu.

7. (En option) Utilisez Terminer le dosage pour terminer manuellement le dosage si vous le souhaitez.

Une fois le dosage terminé, il ne peut pas être redémarré.

Conseil

Dans la plupart des cas, vous devez laisser le dosage se terminer automatiquement. Ne terminez le dosage manuellement que lorsque vous envisagez de l'ignorer.

7.1.1 En cas d'échec du démarrage du dosage

Si le démarrage du dosage échoue, vérifiez les indicateurs Démarrage impossible et Débit trop élevé pour corr. autom. erreur jetée

Si l'indicateur Démarrage impossible est Allumé, vérifiez les points suivants :

- Assurez-vous que le dosage est activé.
- Assurez-vous que le dosage précédent est terminé.
- Assurez-vous que Quantité à délivrer ou Heure cible sont réglées sur un nombre positif.
- Assurez-vous que toutes les sorties ont été affectées à la vanne ou la pompe appropriée au type ou à l'option de dosage.
- Assurez-vous que le transmetteur ne présente aucun problème.
- Pour les dosages par tête de dosage double ou les dosages temporisés par tête de dosage double, assurez-vous qu'aucun dosage n'est en cours sur une tête de dosage.

Si l'indicateur Débit trop élevé pour corr. autom. erreur jetée est allumé, le dernier débit mesuré est trop élevé pour permettre le démarrage du dosage. Autrement dit, le coefficient de correction automatique d'erreur de jetée, compensé pour le débit, stipule que la commande de fermeture de vanne devrait être émise avant le démarrage du dosage. Cela peut se produire si le débit a augmenté de façon importante depuis que le coefficient AOC a été calculé. Micro Motion recommande la procédure de récupération suivante :

- 1. Effectuez tout paramétrage requis pour l'exécution de l'étalonnage AOC.
- 2. Dans la fenêtre Contrôle du dosage, cliquez sur Forcer le démarrage.
- 3. Exécuter l'ajustage de la correction automatique d'erreur de jetée.
- 4. Reprendre le dosage de production sur votre système avec le nouveau coefficient AOC.

7.1.2 Si le dosage n'a pas pu se terminer

Si votre dosage s'est terminé anormalement, vérifiez le transmetteur et l'indicateur Durée maxi du dosage dépassée.

En cas de problème pendant le dosage, le transmetteur interrompt automatiquement le dosage.

Si l'indicateur Durée maxi du dosage dépassée est Allumé, cela signifie que le dosage n'a pas atteint son objectif dans la Durée maxi du dosage. Envisagez les possibilités ou actions suivantes :

- Augmentez le débit de votre procédé.
- Vérifiez les liquides avec entraînement d'air (écoulement biphasique) dans votre fluide procédé.
- Contrôlez la présence éventuelle de blocages dans l'écoulement.
- Assurez-vous que les vannes peuvent se fermer à la vitesse voulue.

- Réglez la Durée maxi du dosage sur une valeur plus élevée.
- Désactivez la Durée maxi du dosage en le réglant sur 0.

7.1.3 Effets de Pause et Reprise sur les dosages TOR à deux paliers

Pour les dosages TOR à deux paliers, les effets de la mise en pause et de la reprise dépendent du lieu où les actions Pause et Reprise interviennent par rapport à l'ouverture et la fermeture des vannes principale et secondaire.

Ouvrir grand débit d'abord, Fermer grand débit d'abord

Dans les illustrations suivantes :

- La vanne principale s'ouvre au début du dosage.
- La vanne secondaire s'ouvre au point configuré par l'utilisateur durant le dosage. *T* représente la durée ou quantité configurée pour Ouvrir petit débit.
- La vanne principale se ferme avant la fin du dosage.
- La vanne secondaire se ferme à la fin du dosage.

Figure 11-2: Cas B

Figure 11-3: Cas C

Figure 11-4: Cas D

Ouvrir grand débit d'abord, Fermer petit débit d'abord

Dans les illustrations suivantes :

- La vanne principale s'ouvre au début du dosage.
- La vanne secondaire s'ouvre au point configuré par l'utilisateur durant le dosage. *T* représente la durée ou quantité configurée pour Ouvrir petit débit.
- La vanne secondaire se ferme avant la fin du dosage.
- La vanne principale se ferme à la fin du dosage.

Figure 11-6: Cas F

Figure 11-7: Cas G

Figure 11-8: Cas H

Ouvrir petit débit d'abord, Fermer grand débit d'abord

Dans les illustrations suivantes :

- La vanne secondaire s'ouvre au début du dosage.
- La vanne principale s'ouvre au point configuré par l'utilisateur durant le dosage. T représente la durée ou quantité configurée pour Ouvrir grand débit.
- La vanne principale se ferme avant la fin du dosage.
- La vanne secondaire se ferme à la fin du dosage.

Figure 11-9: Cas I

Ouvrir petit débit d'abord, Fermer petit débit d'abord

Dans les illustrations suivantes :

- La vanne secondaire s'ouvre au début du dosage.
- La vanne principale s'ouvre au point configuré par l'utilisateur durant le dosage. *T* représente la durée ou quantité configurée pour Ouvrir grand débit.
- La vanne secondaire se ferme avant la fin du dosage.

• La vanne principale se ferme à la fin du dosage.

Figure 11-14: Cas N

7.2 Effectuer une purge manuelle à l'aide de ProLink II

La fonction Purge est utilisée pour contrôler une vanne auxiliaire pouvant servir à des tâches autres que le dosage. Par exemple, elle peut servir à l'ajout d'eau ou de gaz dans le conteneur après le dosage, ou au "remplissage." Le débit dans la vanne auxiliaire n'est pas mesuré par le transmetteur.

Prérequis

La fonctionnalité de purge doit être implémentée dans votre système.

Le dosage précédent doit être terminé.

La vanne auxiliaire doit être reliée au fluide que vous souhaitez utiliser (air, eau, azote par exemple).

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Choisissez ProLink > Exécuter le doseur.
- 2. Cliquez sur Commencer la purge.

Les indicateurs Purge en cours et Vanne de purge sont activés.

- 3. Laissez le fluide de purge s'écouler dans votre système pendant la durée appropriée.
- 4. Cliquez sur Terminer la purge

Les indicateurs Purge en cours et Vanne de purge sont désactivés.

7.3 Nettoyer En Place (NEP) avec ProLink II

La fonction CIP (Clean In Place) permet de forcer l'introduction d'un fluide de nettoyage dans le système. CIP vous permet également de nettoyer les surfaces intérieures des conduites, vannes, buses, etc., sans désassembler l'équipement.

Prérequis

Aucun dosage ne doit être en cours d'exécution.

Le fluide de nettoyage doit pouvoir s'écouler dans l'ensemble du système.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Remplacez le fluide procédé par le fluide de nettoyage.
- 2. Choisissez ProLink > Exécuter le doseur.
- 3. Cliquer sur Commencer le nettoyage.

Le transmetteur ouvre la vanne principale, puis la vanne secondaire si elle est utilisée pour le dosage. Si la fonctionnalité de pompe est activée, la pompe démarre avant l'ouverture de la vanne. L'indicateur Nettoyage en cours s'allume.

- 4. Laissez le fluide de nettoyage s'écouler dans votre système pendant la durée appropriée.
- 5. Cliquer sur Arrêter le nettoyage

Le transmetteur ferme toutes les vannes ouvertes et arrête la pompe, le cas échéant. L'indicateur Nettoyage en cours s'éteint.

6. Remplacez le fluide de nettoyage par le fluide procédé.

7.4 Surveiller et analyser les opérations de dosage avec ProLink II

Vous pouvez collecter des données de flux détaillées pour un dosage unique, et comparer les données entre plusieurs dosages.

7.4.1 Collecter des informations complémentaires détaillées pour un dosage unique avec ProLink II

Lorsque la journalisation du dosage est activée, des données détaillées du dosage le plus récent sont stockées sur le transmetteur. Vous pouvez les récupérer pour les analyser au moyen de communications numériques. Les données détaillées peuvent servir à régler ou dépanner votre environnement de production.

Restriction

Bien que vous puissiez utiliser ProLink II pour activer et désactiver l'enregistrement du dosage, vous ne pouvez pas consulter l'enregistrement du dosage avec ProLink II. Pour consulter l'enregistrement du dosage, vous devez utiliser une connexion Modbus ou PROFIBUS.

Prérequis

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

1. Choisissez ProLink > Configuration > Dosage.
- 2. Activer Activer enregistrement dosage.
- 3. Exécuter un dosage.
- 4. Désactiver Activer enregistrement dosage une fois la collecte d'informations terminée.

L'enregistrement du dosage contient les données d'un seul dosage, du début du dosage jusqu'à 50 millisecondes après l'arrêt de l'écoulement ou jusqu'à ce que la taille d'enregistrement maximale soit atteinte. Les données sont écrites toutes les 10 millisecondes. Chaque donnée contient la valeur actuelle de Source du débit (variable de procédé utilisée pour mesurer le dosage). L'enregistrement du dosage est limité à 1000 enregistrements ou 10 secondes de dosage. Lorsque la taille maximale est atteinte, l'enregistrement s'arrête mais les données sont disponibles sur le transmetteur jusqu'au démarrage du dosage suivant. L'enregistrement du dosage est supprimé à chaque démarrage d'un dosage.

7.4.2 Analyser la performance de dosage avec les statistiques de dosage et ProLink II

Le transmetteur enregistre automatiquement une variété de données concernant chaque dosage. Ces données sont disponibles pour vous assister lors du réglage de votre système.

Prérequis

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Choisissez ProLink > Exécuter le doseur.
- 2. (En option) Cliquer sur RAZ statistiques dosage pour démarrer votre analyse avec un nouvel ensemble d'informations de dosage.
- 3. Exécuter des dosages et observer les informations de dosage.

Informations de dos- age	Type de dosage	Description
Moyenne des dosages to- taux	Dosages tout-ou-rien 1 palier, dosages tout-ou- rien 2 paliers et dosages temporisés	Moyenne du total dosé de tous les dosages effectués depuis la dernière remise à zéro des statistiques.
	Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage	Moyenne du total dosé via la tête de dosage n°1 de tous les dosages effec- tués depuis la dernière remise à zéro des statistiques.
Variance des dosages totaux	Dosages tout-ou-rien 1 palier, dosages tout-ou- rien 2 paliers et dosages temporisés	Variance du total dosé de tous les dosages effectués depuis la dernière remise à zéro des statistiques.
	Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage	Variance du total dosé via la tête de dosage n°1 de tous les dosages effec- tués depuis la dernière remise à zéro des statistiques.

Informations de dos- age	Type de dosage	Description
Moyenne des dosages sec- ondaires	Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage uniquement	Moyenne du total dosé via la tête de dosage n°2 de tous les dosages effec- tués depuis la dernière remise à zéro des statistiques.
Variance des dosages sec- ondaires	Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage uniquement	Variance du total dosé via la tête de dosage n°2 de tous les dosages effec- tués depuis la dernière remise à zéro des statistiques.

Configurer un dosage contrôlé par vanne intégrée avec PROFIBUS EDD

Sujets couverts dans ce chapitre:

- Configurer un dosage contrôlé par vanne intégrée avec PROFIBUS EDD
- Configurer les options de dosage avec PROFIBUS EDD
- Configurer le contrôle de dosage avec PROFIBUS EDD (en option)
- Configurer le rapport de dosage avec PROFIBUS EDD (en option)

8.1 Configurer un dosage contrôlé par vanne intégrée avec PROFIBUS EDD

Configurez le type de dosage approprié à votre application.

Conseil

8

Le dosage tout-ou-rien à une étape convient à la plupart des applications. Utilisez ce type de dosage, sauf si vous devez explicitement utiliser un autre type de dosage. Dans la plupart des cas, le transmetteur est configuré en usine pour un dosage tout-ou-rien à une étape et est opérationnel avec une configuration minimale sur site.

8.1.1 Configurer un dosage TOR à un seul palier avec PROFIBUS EDD

Configurez un dosage tout-ou-rien à une étape lorsque vous souhaitez doser un seul conteneur à partir d'une seule vanne. La vanne sera ouverte jusqu'à ce que la Cible du dosage soit atteinte.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Sortie TOR.
 - b. Définir STOR1 précision sur Vanne principale.
 - c. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Choisir En ligne > Configurer > Configuration manuelle > Mesures.
 - b. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

c. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

d. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

e. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

- 3. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration du dosage.
- 4. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

5. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le double dosage	Désactivé
Autoriser le dosage temporisé	Désactivé
Paliers de dosage	1 palier tout-ou-rien

6. Régler le Sens de comptage des dosages de la façon souhaitée.

Option	Description
Incrémenter jusqu'à la cible	Le total du dosage commence à 0 et augmente jusqu'à la Cible du dosage.
Décrémenter jusqu'à la cible	Le total du dosage commence à la Cible du dosage et réduit jusqu'à 0.

7. Définissez la Cible du dosage sur la quantité à laquelle le dosage sera terminé.

Entrez la valeur dans les unités de mesure configurées pour la Source du débit.

8. Définissez la Durée de dosage max sur le nombre de secondes auquel le dosage sera terminé.

Si la quantité à délivrer configurée n'a pas été atteinte normalement avant la fin de la durée spécifiée, le dosage est arrêté et une alarme Absence produit est générée. Pour désactiver la fonction de temporisation du dosage, définissez Durée de dosage

max sur 0.

La valeur par défaut de Durée de dosage max est 0 (désactivé). La plage est comprise entre 0 seconde et 800 secondes.

9. Définissez Durée de dosage mesurée sur l'option souhaitée.

Durée de dosage mesurée contrôle la façon selon laquelle la durée du dosage est mesurée.

Option	Description
Arrêts du débit	La durée du dosage est incrémentée jusqu'à ce que le transmetteur dé- tecte que le débit est arrêté ou après la fermeture de la vanne.
Fermeture de la vanne	La durée du dosage est incrémentée jusqu'à ce que le transmetteur con- figurée la sortie tout-ou-rien comme requis pour fermer la vanne.

- 10. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration AOC.
- 11. Définir Corr. autom. d'erreur de jetée sur Activé.

Conseil

Micro Motion recommande vivement d'appliquer une AOC (Automatic Overshoot Compensation). Une fois activée et étalonnée, l'AOC améliore la précision et la répétabilité du dosage.

- 12. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration de la purge.
- 13. Définir Activer purge sur Désactivé.

Postrequis

Options des dosages à un palier TOR :

- Configuration de la correction automatique d'erreur de jetée (AOC). Si l'AOC est activée, vérifiez qu'elle est correctement configurée et étalonnée pour votre application.
- Implémentation de la fonction de purge.
- Implémentation de la fonction de pompe.

8.1.2 Configurer un dosage TOR à deux paliers avec PROFIBUS EDD

Configurez un dosage tout-ou-rien à deux étapes lorsque vous souhaitez doser un seul conteneur à partir de deux vannes.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Sortie TOR.
 - b. Définir STOR1 précision sur Vanne principale.
 - c. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- d. Définir STOR2 précision sur Vanne secondaire.
- e. Définissez Polarité STOR2 précision en fonction de votre installation.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

- 2. Configurer les paramètres de mesure du débit :
 - a. Choisir En ligne > Configurer > Configuration manuelle > Mesures.
 - b. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

c. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

d. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

e. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

3. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration du dosage.

4. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

5. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le double dosage	Désactivé
Autoriser le dosage temporisé	Désactivé
Paliers de dosage	2 paliers tout-ou-rien

6. Régler le Sens de comptage des dosages de la façon souhaitée.

Option	Description
Incrémenter jusqu'à la cible	Le total du dosage commence à 0 et augmente jusqu'à la Cible du dosage.
Décrémenter jusqu'à la cible	Le total du dosage commence à la Cible du dosage et réduit jusqu'à 0.

7. Définissez Configurer par sur l'option souhaitée.

Configurer par contrôle la façon selon laquelle la temporisation de la commande est configurée.

Option	Description
% quantité à délivrer	 La temporisation d'ouverture et de fermeture de la vanne est configurée en pourcentage de la Cible du dosage. Par exemple : Ouverture de vanne = 0 % : la vanne s'ouvre lorsque le total du dosage actuel correspond à 0 % de la Cible du dosage. Fermeture de vanne = 90 % : la vanne se ferme lorsque le total du dosage actuel correspond à 90 % de la Cible du dosage.
Quantité	 La temporisation d'ouverture et de fermeture de la vanne est configurée en fonction de l'unité de mesure configurée. Par exemple : Ouverture de vanne = 0 g : la vanne s'ouvre lorsque le total du dosage actuel est de 0 g. Fermeture de vanne = 50 g : la vanne se ferme lorsque le total du dosage actuel est de 50 g inférieur à la Cible du dosage.

8. Définissez la Cible du dosage sur la quantité à laquelle le dosage sera terminé.

Entrez la valeur dans les unités de mesure configurées pour la Source du débit.

9. Définissez la Durée de dosage max sur le nombre de secondes auquel le dosage sera terminé.

Si la quantité à délivrer configurée n'a pas été atteinte normalement avant la fin de la durée spécifiée, le dosage est arrêté et une alarme Absence produit est générée.

Pour désactiver la fonction de temporisation du dosage, définissez Durée de dosage max sur 0.

La valeur par défaut de Durée de dosage max est 0 (désactivé). La plage est comprise entre 0 seconde et 800 secondes.

10. Définissez Durée de dosage mesurée sur l'option souhaitée.

Durée de dosage mesurée contrôle la façon selon laquelle la durée du dosage est mesurée.

Option	Description
Arrêts du débit	La durée du dosage est incrémentée jusqu'à ce que le transmetteur dé- tecte que le débit est arrêté ou après la fermeture de la vanne.
Fermeture de la vanne	La durée du dosage est incrémentée jusqu'à ce que le transmetteur con- figurée la sortie tout-ou-rien comme requis pour fermer la vanne.

11. Définissez Ouvrir primaire, Ouvrir secondaire, Fermer primaire et Fermer secondaire sur les options souhaitées.

Ces valeurs contrôlent le point du dosage auquel les vannes primaire et secondaire s'ouvrent et se ferment. Elles sont configurées par quantité ou pourcentage de la cible, tel que contrôlé par le paramètre Configurer par.

Ouvrir primaire ou Ouvrir secondaire doit être configuré pour ouvrir une vanne au début du dosage. Les deux peuvent être ouvertes au début du dosage si vous le souhaitez. Si vous configurez l'ouverture ultérieure d'une vanne, l'autre est automatiquement réinitialisée pour s'ouvrir au début du dosage.

Fermer primaire ou Fermer secondaire doit être configuré pour fermer une vanne à la fin du dosage. Les deux peuvent être fermées à la fin du dosage si vous le souhaitez. Si vous configurez la fermeture anticipée d'une vanne, l'autre est automatiquement réinitialisée pour se fermer à la fin du dosage.

- 12. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration AOC.
- 13. Définir Corr. autom. d'erreur de jetée sur Activé.

Conseil

Micro Motion recommande vivement d'appliquer une AOC (Automatic Overshoot Compensation). Une fois activée et étalonnée, l'AOC améliore la précision et la répétabilité du dosage.

- 14. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration de la purge.
- 15. Définir Activer purge sur Désactivé.

Postrequis

Options des dosages à deux paliers TOR :

- Configuration de la correction automatique d'erreur de jetée (AOC). Si l'AOC est activée, vérifiez qu'elle est correctement configurée et étalonnée pour votre application.
- Implémentation de la fonction de purge.

Séquences d'ouverture et de fermeture de vanne pour les dosages TOR à deux paliers

Les figures suivantes illustrent l'ouverture et la fermeture des vannes principale et secondaire, contrôlées par la configuration de Ouverture grand débit, Ouverture petit débit, Fermer grand débit, et Fermer petit débit.

Ces illustrations considèrent que le dosage s'effectue du début à la fin sans interruption.

Effets du Mode de configurationsur l'ouverture et la fermeture de la vanne

Le Mode de configuration contrôle la façon dont les valeurs Ouverture grand débit, Ouverture petit débit, Fermeture grand débit, et Fermeture petit débit sont configurées et appliquées.

- Lorsque le Mode de configuration = % Cible, le transmetteur ajoute les valeurs d'ouverture et de fermeture de vanne configurées à 0 %.
- Lorsque le Mode de configuration = Quantité, le transmetteur ajoute les valeurs d'ouverture configurées à 0 et soustrait les valeurs de fermeture de vanne configurées de la Quantité à délivrer.

Exemple : Mode de configuration et commandes d'ouverture/fermeture de la vanne

Quantité à délivrer = 200 g. Vous voulez que la vanne à grand débit s'ouvre au début du conditionnement et se ferme à la fin du conditionnement. Vous voulez que la vanne à petit débit s'ouvre après que 10 g ont été délivrés, et se ferme après que 190 g ont été délivrés. Voir *Tableau 10-1* pour découvrir les paramètres qui produisent ce résultat.

Mode de configuration	Valeurs d'ouverture et de fermeture de la vanne
% quantité à délivrer	 Ouverture grand débit = 0 % Ouverture petit débit = 5 % Fermeture petit débit = 95 % Fermeture grand débit = 100 %
Quantité	 Ouverture grand débit = 0 g Ouverture petit débit = 10 g Fermeture petit débit = 10 g Fermeture grand débit = 0 g

rabieda ib it modo do bolingaradon et contrigaradon de la familia	Tableau 10-1:	Mode de configu	ration et confi	guration de	la vanne
---	---------------	-----------------	-----------------	-------------	----------

8.1.3 Configurer un dosage temporisé avec PROFIBUS EDD

Configurez un dosage minuté à une étape lorsque vous souhaitez doser un seul conteneur à partir d'une seule vanne. La vanne restera ouverte pendant le nombre de secondes indiqué.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Sortie TOR.
 - b. Définir STOR1 précision sur Vanne principale.
 - c. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Choisir En ligne > Configurer > Configuration manuelle > Mesures.
 - b. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

c. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

d. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

e. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

- 3. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration du dosage.
- 4. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

5. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le double dosage	Désactivé
Autoriser le dosage temporisé	Activé
Paliers de dosage	Tout-ou-rien

6. Régler le Sens de comptage des dosages de la façon souhaitée.

Option	Description
Incrémenter jusqu'à la cible	Le total du dosage commence à 0 et augmente jusqu'à la Cible du dosage.
Décrémenter jusqu'à la cible	Le total du dosage commence à la Cible du dosage et réduit jusqu'à 0.

- 7. Définissez la Durée cible sur le nombre de secondes d'exécution du dosage.
- 8. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration AOC.
- 9. Définir Corr. autom. d'erreur de jetée sur Désactivé.
- 10. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration de la purge.
- 11. Définir Activer purge sur Désactivé.

Postrequis

L'option suivante est disponible pour les dosages temporisés :

• Implémentation de la fonction de purge.

8.1.4 Configurer un dosage à tête de dosage double avec PROFIBUS EDD

Configurez un dosage à double tête de dosage minuté lorsque vous souhaitez doser deux conteneurs en alternance à l'aide de deux têtes de dosage. Chaque vanne sera ouverte jusqu'à ce que la Cible du dosage soit atteinte.

Important

La Cible du dosage configurée s'applique aux deux têtes de dosage.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Sortie TOR.
 - b. Définir STOR1 précision sur Vanne principale.
 - c. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif Marche		Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- d. Définir STOR2 précision sur Vanne secondaire.
- e. Définissez Polarité STOR2 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Choisir En ligne > Configurer > Configuration manuelle > Mesures.
 - b. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

c. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

d. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

e. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

- 3. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration du dosage.
- 4. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

5. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le double dosage	Activée
Autoriser le dosage temporisé	Désactivé
Paliers de dosage	Tout-ou-rien 1 palier

6. Régler le Sens de comptage des dosages de la façon souhaitée.

Option	Description
Incrémenter jusqu'à la cible	Le total du dosage commence à 0 et augmente jusqu'à la Cible du dosage.
Décrémenter jusqu'à la cible	Le total du dosage commence à la Cible du dosage et réduit jusqu'à 0.

7. Définissez la Cible du dosage sur la quantité à laquelle le dosage sera terminé.

Entrez la valeur dans les unités de mesure configurées pour la Source du débit.

8. Définissez la Durée de dosage max sur le nombre de secondes auquel le dosage sera terminé.

Si la quantité à délivrer configurée n'a pas été atteinte normalement avant la fin de la durée spécifiée, le dosage est arrêté et une alarme Absence produit est générée. Pour désactiver la fonction de temporisation du dosage, définissez Durée de dosage max sur 0.

La valeur par défaut de Durée de dosage max est 0 (désactivé). La plage est comprise entre 0 seconde et 800 secondes.

9. Définissez Durée de dosage mesurée sur l'option souhaitée.

Durée de dosage mesurée contrôle la façon selon laquelle la durée du dosage est mesurée.

Option	Description
Arrêts du débit	La durée du dosage est incrémentée jusqu'à ce que le transmetteur dé- tecte que le débit est arrêté ou après la fermeture de la vanne.
Fermeture de la vanne	La durée du dosage est incrémentée jusqu'à ce que le transmetteur con- figurée la sortie tout-ou-rien comme requis pour fermer la vanne.

- 10. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration AOC.
- 11. Définir Corr. autom. d'erreur de jetée sur Activé.

Conseil

Micro Motion recommande vivement d'appliquer une AOC (Automatic Overshoot Compensation). Une fois activée et étalonnée, l'AOC améliore la précision et la répétabilité du dosage.

- 12. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration de la purge.
- 13. Définir Activer purge sur Désactivé.

Postrequis

Options pour les dosages à tête de dosage double :

 Configuration de la correction automatique d'erreur de jetée (AOC). Si l'AOC est activée, vérifiez qu'elle est correctement configurée et étalonnée pour votre application.

8.1.5 Configurer un dosage temporisé à tête de dosage double avec PROFIBUS EDD

Configurez un dosage à double tête de dosage lorsque vous souhaitez doser deux conteneurs en alternance à l'aide de deux têtes de dosage. Chaque vanne restera ouverte pendant le nombre de secondes indiqué.

```
Important
```

La Durée cible configurée s'applique aux deux têtes de dosage.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Sortie TOR.
 - b. Définir STOR1 précision sur Vanne principale.
 - c. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- d. Définir STOR2 précision sur Vanne secondaire.
- e. Définissez Polarité STOR2 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Choisir En ligne > Configurer > Configuration manuelle > Mesures.
 - b. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

c. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

d. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

e. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

- 3. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration du dosage.
- 4. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

5. Définissez ou vérifiez les paramètres suivants :

Paramètre	Paramètre
Autoriser le double dosage	Activée
Autoriser le dosage temporisé	Activée
Paliers de dosage	Tout-ou-rien 1 palier

6. Définissez la Durée cible sur le nombre de secondes d'exécution du dosage.

Remarque

La Durée cible configurée s'applique aux deux têtes de dosage.

- 7. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration AOC.
- 8. Définir Activation Corr. autom. d'erreur de jetée sur Désactivé.
- 9. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration de la purge.
- 10. Définir Activer purge sur Désactivé.

8.2 Configurer les options de dosage avec PROFIBUS EDD

Selon le type de dosage, vous pouvez configurer et implémenter une AOC, la fonction de purge ou la fonction de pompage.

8.2.1 Configurer et mettre en œuvre la correction automatique d'erreur de jetée (AOC) avec PROFIBUS EDD

La correction automatique d'erreur de jetée (AOC) est utilisée pour ajuster la temporisation du dosage afin de compenser le temps requis pour transmettre la commande de fermeture de la vanne afin que celle-ci se ferme complètement.

Prérequis

Avant de configurer l'AOC, assureez-vous que tous les autres paramètres de dosage sont correctement configurés.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration AOC.
- 2. Choisissez le type d'AOC que vous voulez mettre en œuvre.

Option	Description
Fixe	Fixe : la vanne se fermera au point défini par la Quantité à délivrer moins la valeur spécifiée pour le paramètre Valeur fixe corr. erreur jetée. Utilisez cette option uniquement si la valeur "d'avertissement" est déjà connue.
Sur-dos- age	Définit la direction utilisée par l'algorithme AOC pour approcher de la quantité à délivrer. L'algorithme AOC commence par estimer une valeur de sur-dosage et réduit le sur-dosage par des dosages d'ajustage successifs.
Sous-dos- age	Définit la direction utilisée par l'algorithme AOC pour approcher de la quantité à délivrer. L'algorithme AOC commence par estimer une valeur de sous-dosage et réduit le sous-dosage par des dosages d'ajustage successifs.

Conseil

L'option Fixe n'est généralement pas utilisée. Si vous choisissez Fixe, le transmetteur fonctionnera comme un prédéterminateur hérité. Dans les applications classiques, les autres options AOC fournissent une précision et une répétabilité améliorées.

Restriction

Les optionsFixe et Sur-dosage ne sont pas prises en charge pour les dosages à tête double.

- 3. Pour mettre en oeuvre une AOC fixe :
 - a. Désactiver Activer AOC.
 - b. Régler Algorithme AOC sur Fixe
 - c. Régler Valeur fixe corr. erreur jetée sur la valeur désirée.

La valeur par défaut est 0, mesurée en unités de procédé.

Le transmetteur fermera la vanne lorsque le total dosé actuel sera égal à la Quantité à délivrer moins la valeur prévue (en unités de procédé).

- 4. Pour mettre en oeuvre Sur-dosage ou Sous-dosage :
 - a. Assurez-vous que la case Activer AOC est cochée.
 - b. Réglez Algorithme AOC sur Sur-dosage ou Sous-dosage.
 - c. Réglez nombre de dosages AOC sur le nombre de dosages qui seront utilisés pour l'ajustage AOC.

La valeur par défaut est 10. La plage s'étend de 2 à 32.

Conseil

Micro Motion recommande d'utiliser la valeur par défaut, à moins que vous ayez des exigences particulières liées à vos applications.

Important

Ne modifiez pas les valeurs de Limite de modification AOC ni de Taux de convergence AOC à moins que vous ne travailliez avec le service client de Micro Motion. Ces paramètres sont utilisés pour ajuster le fonctionnement de l'algorithme AOC aux exigences particulières liées aux applications.

Postrequis

Si vous avez réglé l'Algorithme AOC sur Sur-dosage ou Sous-dosage, vous devez exécuter l'ajustage AOC.

Effectuer un ajustage AOC à l'aide de PROFIBUS EDD

L'ajustage AOC est utilisé pour calculer la valeur d'AOC (Correction automatique d'erreur de jetée) des données réelles du dosage. Si vous avez réglé l'Algorithme AOC sur Sur-dosage ou Sous-dosage, vous devez exécuter l'ajustage AOC.

Cet ajustage peut être réalisé de deux manières :

- Standard : l'ajustage est effectué manuellement. Le coefficient AOC est calculé à partir des données de dosage obtenues pendant cet ajustage, et le même coefficient AOC est appliqué jusqu'au prochain ajustage.
- Continue : l'ajustage est exécuté continuellement et automatiquement, et le coefficient AOC est mis à jour en continu, sur la base des données de dosage de la dernière série de dosages.

Conseil

Pour des procédés stables, Micro Motion recommande l'ajustage AOC standard. Si nécessaire, testez les deux méthodes et choisissez celle qui fournit les meilleurs résultats.

Exécuter l'ajustage de la correction automatique d'erreur de jetée standard

L'ajustage AOC standard est utilisé pour générer un coefficient AOC constant.

Prérequis

Le Nombre de dosages AOC doit être correctement défini. Micro Motion recommande d'utiliser la valeur par défaut (10), à moins que vous ayez des exigences particulières liées à vos applications.

Seuil de coupure du débit massique ou Seuil de coupure du débit volumique doivent être réglés correctement en fonction de votre environnement.

- Si Origine d'écoulement est réglé sur Débit massique, voir Section 15.2.3.
- Si Origine d'écoulement est réglé sur Débit volumique, voir Section 15.3.2.

Votre système doit être prêt à exécuter des dosages, et vous devez savoir comment faire.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Choisir En ligne > Présentation > Commande de dosage > Contrôle AOC.
- 2. Pour calibrer la vanne principale (tous types de dosages) :
 - a. Cliquez sur Démarrer ajustage AOC.
 - b. Exécuter deux ou plusieurs dosages d'ajustage jusque'au nombre indiqué dans le Nombre de dosages AOC.

Remarque

Vous pouvez exécuter plusieurs dosages d'ajustage si vous le souhaitez. Le coefficient de correction est calculé à partir des dosages les plus récents.

Conseil

Généralement, les premiers dosages sont un peu sur-dosés ou sous-dosés en raison des paramètres d'usine. Pendant l'ajustage, les dosages convergent vers la Quantité à délivrer.

- c. Lorsque les totaux dosés sont satisfaisants, cliquez sur Enregistrer ajustage AOC.
- 3. Pour ajuster la vanne secondaire (dosages à tête de dosage double) :
 - a. Cliquez sur Démarrer ajustage AOC secondaire.
 - Exécuter deux ou plusieurs dosages d'ajustage jusque'au nombre indiqué dans le Nombre de dosages AOC.

Le transmetteur exécute automatiquement des dosages via la vanne secondaire.

Remarque

Vous pouvez exécuter plusieurs dosages d'ajustage si vous le souhaitez. Le coefficient de correction est calculé à partir des dosages les plus récents.

Conseil

Généralement, les premiers dosages sont un peu sur-dosés ou sous-dosés en raison des paramètres d'usine. Pendant l'ajustage, les dosages convergent vers la Quantité à délivrer.

c. Lorsque les totaux dosés sont satisfaisants, cliquez sur Enregistrer ajustage AOC secondaire.

Le coefficient AOC actuel est affiché dans la fenêtre Démarrer le doseur. Si vous exécutez un dosage par tête de dosage double, la fenêtre Démarrer le doseur affiche le coefficient AOC des vannes principale et secondaire. Ces coefficients seront appliqués tant que l'AOC sera activée.

Remarque

En ce qui concerne les dosages TOR 2 paliers, la valeur d'AOC est appliquée à la vanne qui se ferme lorsque l'objectif est atteint. Si le dosage est configuré pour fermer les deux vannes lorsque l'objectif est atteint, la valeur d'AOC est appliquée aux deux.

Conseil

Micro Motion recommande de répéter l'ajustage AOC dans les cas suivants :

- Un élément du système de mesurage a été remplacé ou ajusté.
- Le débit change de façon importante.
- La précision du dosage est sensiblement inférieure aux attentes.
- Le Seuil de coupure du débit massique ou le Seuil de coupure du débit volumique ont été modifiés.

Configurer l'ajustage continu de la correction automatique d'erreur de jetée

L'ajustage AOC continu est utilisé pour mettre à jour le coefficient AOC en continu, sur la base des données de dosage de la dernière série de dosages.

Prérequis

Le Nombre de dosages AOC doit être correctement défini. Micro Motion recommande d'utiliser la valeur par défaut (10), à moins que vous ayez des exigences particulières liées à vos applications.

Votre système doit être prêt à exécuter des dosages, et vous devez savoir comment faire.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration AOC.
- Pour ajuster la vanne principale (tous types de dosages), cliquez sur Démarrer l'ajustage AOC. Pour ajuster la vanne secondaire (tête de dosage double), cliquez sur Démarrer l'ajustage AOC secondaire.

Vous pouvez paramétrer un ajustage AOC pour chaque vanne individuellement ou pour les deux.

3. Commencer les dosages de production.

Le transmetteur recalcule le(s) coefficient(s) AOC après chaque dosage, sur la base de *x* dosages où *x* est le nombre indiqué dans Nombre de dosages AOC. Les valeurs actuelles sont affichées dans la fenêtre Exécuter le doseur. Si la configuration ou les conditions du procédé ont changé, l'ajustage AOC continu compense ce changement. Cependant, l'ajustement prend place après plusieurs dosages ; ainsi, l'AOC demande quelques dosages pour rattraper les valeurs.

Conseil

Le coefficient AOC actuel sera enregistré et appliqué à tous les dosages suivants via la vanne correspondante. En d'autres termes, cette action change donc l'ajustage continu de l'erreur de jetée de cette vanne en ajustage standard.

8.2.2 Configurer la fonctionnalité de purge avec PROFIBUS EDD

La fonction Purge est utilisée pour contrôler une vanne auxiliaire pouvant servir à des tâches autres que le dosage. Par exemple, elle peut servir à l'ajout d'eau ou de gaz dans le conteneur après le dosage, ou au "remplissage." Le débit dans la vanne auxiliaire n'est pas mesuré par le transmetteur. Vous pouvez configurer la fonction de purge pour la commande de purge automatique ou manuelle. Si vous choisissez la commande automatique, la vanne auxiliaire est ouverte après chaque dosage, puis fermée une fois la durée de purge configurée écoulée.

Restriction

La fonction de purge n'est pas prise en charge dans les dosages à double tête de dosage ou les dosages minutés à double tête de dosage.

Prérequis

Les sorties tout-ou-rien doivent être câblées de manière appropriée en fonction du type et des options de votre dosage.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurez le canal B pour fonctionner en tant que sortie tout-ou-rien :
 - a. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Canaux.
 - b. Définir Type d'entrée/sortie du canal B sur Sortie TOR.
 - c. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Sortie TOR.
 - d. Définir Affectation STOR1 sur Prédéterminateur : Vanne de purge.
 - e. Définissez Polarité STOR1 en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

f. Définissez Action sur défaut STOR1 en fonction de votre installation.

Option	Description
Valeur haute	La sortie tout-ou-rien est définie sur Marche (ON) (ouver- ture de la vanne) en cas de défaut.
Valeur basse	La sortie tout-ou-rien est définie sur Arrêt (OFF) (ferme- ture de la vanne) en cas de défaut.
Aucune	Aucune action n'est entreprise en cas de défaut. La sortie tout-ou-rien reste dans l'état dans lequel elle était avant le défaut.

- 2. Configurez la purge :
 - a. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration du dosage.
 - b. Activez Activer purge.
 - c. Définissez le Mode purge sur l'option souhaitée.

Option	Description
Auto	Une purge est automatiquement exécutée après chaque dosage.
Manuel	Les purges doivent être démarrées et arrêtées man- uellement.

Conseil

Lorsque le Mode purge est défini sur Auto, une commande manuelle de la vanne de purge est toujours possible. Vous pouvez démarrer une purge manuellement et l'arrêter manuellement, ou vous pouvez laisser le soin au transmetteur de l'arrêter une fois la Durée de purge écoulée. Si une purge est démarrée automatiquement, vous pouvez l'arrêter manuellement.

d. Si vous définissez le Mode purge sur Auto, définissez le Délai de purge sur le nombre de secondes que le transmetteur devra attendre, une fois le dosage terminé, avant d'ouvrir la vanne de purge.

La valeur par défaut du Délai de purge est de 2 secondes.

e. Si vous définissez le Mode purge sur Auto, définissez la Durée de purge sur le nombre de secondes pendant lesquelles le transmetteur devra maintenir la vanne de purge ouverte.

La valeur par défaut de la Durée de purge est de 1 seconde. La plage est comprise entre 0 seconde et 800 secondes.

Conseil

Le dosage suivant ne peut pas commencer tant que la vanne de purge n'est pas fermée.

8.2.3 Configurer la fonctionnalité de pompe avec PROFIBUS EDD

La fonction Pompe est utilisée pour augmenter la pression pendant le dosage en démarrant une pompe en amont juste avant de démarrer le dosage.

Restriction

La fonction de purge n'est pas prise en charge dans les dosages tout-ou-rien à deux étapes, les dosages à double tête de dosage, les dosages minutés et les dosages minutés à double tête de dosage.

Prérequis

Les sorties tout-ou-rien doivent être câblées de manière appropriée en fonction du type et des options de votre dosage.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Sortie TOR.
 - b. Définir STOR2 précision sur Pompe.
 - c. Définissez Polarité STOR2 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration du dosage
- 3. Définissez le Délai pompe à vanne sur le nombre de secondes d'exécution de la pompe avant l'ouverture de la vanne.

La valeur par défaut est de 10 secondes. La plage est comprise entre 0 seconde et 30 secondes.

Lorsque la commande Commencer le dosage est reçue, le transmetteur démarre la pompe, attend le nombre de secondes spécifié dans Délai pompe à vanne, puis ouvre la vanne. La pompe fonctionne jusqu'à ce que le dosage soit terminé.

8.3 Configurer le contrôle de dosage avec PROFIBUS EDD (en option)

Dans un environnement de production classique, le contrôle de dosage (démarrage et arrêt du dosage) est effectué par l'hôte ou l'API. Si vous le souhaitez, vous pouvez régler le système pour démarrer, arrêter, interrompre et reprendre le dosage depuis l'entrée TOR (si disponible). Vous pouvez également définir un évènement pour démarrer, arrêter, interrompre et reprendre le dosage.

8.3.1 Configurer l'entrée TOR pour la commande de dosage avec PROFIBUS EDD

Si le canal B est disponible, vous pouvez le configurer comme une entrée TOR et l'utiliser pour démarrer et arrêter le dosage, ou pour interrompre et reprendre un dosage en cours. Vous pouvez également le configurer pour remettre à zéro le total partiel massique, le total volumique partiel ou tous les totaux. Lorsque l'entrée TOR est activée, toutes les actions affectées seront performées.

Prérequis

Le canal B doit être câblé pour fonctionner en tant qu'entrée tout-ou-rien.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurez le canal B pour fonctionner en tant qu'entrée tout-ou-rien.
 - a. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Canaux.
 - b. Définir Type d'entrée/sortie du canal B sur Entrée TOR.
- 2. Affectez des actions de contrôle à l'entrée TOR.

- a. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Entrée TOR.
- b. Sélectionnez l'action (les actions) à effectuer lorsque l'entrée TOR est activée.

Action	Description	Commentaires
Démarrer le dosage	Démarre un dosage avec la configuration de dosage actuelle. Le total dosé est automati- quement remis à zéro au début du dosage.	Si un dosage est en cours, la commande est ig- norée. Si une purge automatique est en cours, les fonctions de démarrage de dosage sont exé- cutées lorsque la purge est complète.
Arrêter le dosage	Arrêt le dosage actuel et exécute les fonctions d'arrêt de dosage. Le dosage ne peut pas être redémarré.	Exécuté quand un dosage est en cours ou in- terrompu, et pendant une purge ou une tem- porisation de purge. Pour les dosages à tête de dosage double et les dosages temporisés à tête de dosage dou- ble, la commande arrête toujours le dosage actif en cours.
Interrompre le dosage	Dosages temporisés, dosages à tête de dosage double, et dosages temporisés à tête de dos- age double : voir Arrêter le dosage.	
	Dosages TOR 1 palier et 2 paliers : interrompt temporairement le dosage. Le dosage peut être redémarré si le total dosé n'a pas atteint la Quantité à délivrer.	Si une purge ou une temporisation de purge sont en cours, la commande est ignorée.
Redémarrer le dosage	Redémarre un dosage qui a été interrompu. Le comptage reprend au total dosé ou au mo- ment où il se trouvait lorsque le dosage a été interrompu.	Exécuté uniquement lorsqu'un dosage TOR 1 palier ou 2 paliers a été interrompu. Ignoré dans tous les autres cas.
RAZ du total partiel en masse	Remise à zéro de la valeur du totalisateur parti- el en masse.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.
RAZ du total partiel en volume	Remise à zéro de la valeur du totalisateur parti- el en volume.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.
RAZ de tous les totaux	RAZ de la valeur des totalisateurs partiels en masse et en volume, et du total dosé.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.

- c. Pour chaque action sélectionnée, ouvrez la liste déroulante et sélectionnez Entrée TOR 1.
- 3. Définissez Polarité ETOR1 en fonction de votre installation.

Vérifiez que le signal de Marche (ON) envoyé par l'entrée tout-ou-rien est bien interprété (Marche), et vice versa.

Option	Tension appliquée entre les bornes	Lecture du transmetteur
Niveau haut actif	3 à 30 Vcc	Marche
	<0,8 Vcc	Arrêt
Niveau bas actif	<0,8 Vcc	Marche
	3 à 30 Vcc	Arrêt

8.3.2 Configurer un événement pour contrôler un dosage avec PROFIBUS EDD

Vous pouvez affecter un évènement pour démarrer, arrêter, interrompre ou reprendre un dosage. Vous pouvez également affecter l'évènement pour remettre à zéro le total partiel massique, le total volumique partiel ou tous les totaux. Lorsque l'évènement s'active (ON), toutes les actions affectées s'exécutent.

Prérequis

Tous les évènements que vous souhaitez utiliser doivent être configurés. Vous pouvez les configurer avant ou après leur avoir attribué des actions.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Affectez des actions de contrôle du dosage à l'évènement.
 - a. Choisir En ligne > Configurer > Configuration d'alerte > Évènements TOR.
 - b. Identifez l'action (les actions) à exécuter lorsque l'Evènement TOR 1 survient.

Action	Description	Commentaires
Démarrer le dosage	Démarre un dosage avec la configuration de dosage actuelle. Le total dosé est automati- quement remis à zéro au début du dosage.	Si un dosage est en cours, la commande est ig- norée. Si une purge automatique est en cours, les fonctions de démarrage de dosage sont exé- cutées lorsque la purge est complète.
Arrêter le dosage	Arrêt le dosage actuel et exécute les fonctions d'arrêt de dosage. Le dosage ne peut pas être redémarré.	Exécuté quand un dosage est en cours ou in- terrompu, et pendant une purge ou une tem- porisation de purge. Pour les dosages à tête de dosage double et les dosages temporisés à tête de dosage dou- ble, la commande arrête toujours le dosage actif en cours.
Interrompre le dosage	Dosages temporisés, dosages à tête de dosage double, et dosages temporisés à tête de dos- age double : voir Arrêter le dosage.	
	Dosages TOR 1 palier et 2 paliers : interrompt temporairement le dosage. Le dosage peut être redémarré si le total dosé n'a pas atteint la Quantité à délivrer.	Si une purge ou une temporisation de purge sont en cours, la commande est ignorée.

Action	Description	Commentaires
Redémarrer le dosage	Redémarre un dosage qui a été interrompu. Le comptage reprend au total dosé ou au mo- ment où il se trouvait lorsque le dosage a été interrompu.	Exécuté uniquement lorsqu'un dosage TOR 1 palier ou 2 paliers a été interrompu. Ignoré dans tous les autres cas.
RAZ du total partiel en masse	Remise à zéro de la valeur du totalisateur parti- el en masse.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.
RAZ du total partiel en volume	Remise à zéro de la valeur du totalisateur parti- el en volume.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.
RAZ de tous les totaux	RAZ de la valeur des totalisateurs partiels en masse et en volume, et du total dosé.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.

2. Recommencez pour les Évènements TOR 2 à 5..

Exemple : Procédé de surveillance des évènements et interruption ou arrêt du dosage

La plage acceptable de masse volumique pour votre procédé est de 1,1 g/cm³ à 1,12 g/cm³. La plage de température acceptable est de 20 °C à 25 °C. Vous souhaitez interrompre le dosage si la masse volumique sort de cette plage. Vous souhaitez arrêter le dosage si la température sort de cette plage.

Configuration de l'événement :

- Événement TOR 1 :
 - Type d'événement : Hors plage
 - Grandeur mesurée : Masse volumique
 - Valeur seuil bas (A) : 1,1 g/cm³
 - Valeur seuil haut (B): 1,12 g/cm³
- Événement TOR 2 :
 - Type d'événement : Hors plage
 - Grandeur mesurée : Température
 - Valeur seuil bas (A) : 20 °C
 - Valeur seuil haut (B): 25 °C

Affectations d'action :

- Interruption du dosage : Évènement TOR 1
- Arrêt du dosage : Évènement TOR 2

Postrequis

Si vous avez affecté des actions à des évènements qui ne sont pas configurés, vous devez configurer ces évènements avant de mettre en œuvre ce mode de contrôle des dosages.

8.3.3 Actions multiples affectées à un évènement ou une entrée tout ou rien

Si plusieurs actions sont affectées à un évènement ou une entrée tout ou rien, le transmetteur n'effectue que les actions appropriées dans la situation actuelle. Si deux ou plusieurs actions sont incompatibles, le transmetteur effectue les actions selon le modèle de priorité défini dans son micrologiciel.

Les exemples suivants montrent trois configurations recommandées par Micro Motion, et deux configurations qui ne sont pas recommandées.

Exemple : Utilisation d'un évènement ou d'une entrée tout ou rien pour démarrer et achever le dosage (recommandé)

Affectations d'action :

- Démarrage du dosage
- Arrêt du dosage
- RAZ du total partiel en masse
- RAZ du total partiel en volume

Résultat de l'activation :

- Si aucun dosage n'est en cours, les compteurs de masse et de volume sont remis à zéro et un dosage démarre.
- Si un dosage est en cours, il est arrêté et les compteurs de masse et de volume sont remis à zéro.

Exemple : Utilisation d'un évènement ou d'une entrée tout ou rien pour démarrer, mettre en pause et reprendre le dosage (recommandé)

Affectations d'action :

- Démarrage du dosage
- Interruption du dosage
- Redémarrage du dosage

Résultat de l'activation :

- Si aucun dosage n'est en cours, un dosage démarre.
- Si un dosage et en cours et n'est pas en pause, il est mis en pause.
- Si un dosage est en pause, il redémarre.

Exemple : Utilisation d'une entrée tout ou rien pour démarrer le dosage et remettre le débit volumique à zéro (recommandé)

Affectations d'action :

- Démarrage du dosage
- RAZ du total partiel en volume

Résultat de l'activation :

- Si aucun dosage n'est en cours, le compteur de volume est remis à zéro et un dosage démarre.
- Si un dosage est en cours, le compteur de volume est remis à zéro.

Conseil

Cette configuration est utile si vous avez configuré votre dosage en termes de masse, mais voulez également connaître le total en volume du dosage. Dans ce cas, n'activez pas l'entrée tout ou rien tant que le dosage est en cours. À la fin du dosage, relevez le total en volume. Puis passez au dosage suivant.

Exemple : Affectations incompatibles (non recommandées)

Affectations d'action :

- Démarrage du dosage
- Arrêt du dosage
- Interruption du dosage
- Redémarrage du dosage

Résultat de l'activation :

- Si aucun dosage n'est en cours, un dosage démarre.
- Si un dosage est en cours, il est arrêté.

Dans cet exemple, l'évènement ou l'entrée tout ou rien ne mettra jamais le dosage en pause parce que l'action Arrêter le dosage est prioritaire.

Exemple : Affectations incompatibles (non recommandées)

Affectations d'action :

- Arrêt du dosage
- RAZ de tous les totaux

Résultat de l'activation :

- Si aucun dosage n'est en cours, tous les totaux, y compris le total dosé, sont remis à zéro.
- Si un dosage est en cours, il est arrêté et tous les totaux, y compris le total dosé, sont remis à zéro.

Avec cette combinaison, le total dosé est remis à zéro avant que les données puissent être relevées.

8.4 Configurer le rapport de dosage avec PROFIBUS EDD (en option)

Vous pouvez configurer le transmetteur pour qu'il signaler l'état activé/désactivé (ON/OFF) du dosage sur le Canal B (si disponible), ainsi que le pourcentage de quantité délivrée sur la sortie analogique.

8.4.1 Configurer Canal B pour fonctionner en tant que sortie TOR et signaler l'état activé/désactivé (ON/OFF) de dosage avec PROFIBUS EDD

Si le Canal B est disponible, vous pouvez l'utiliser pour signaler l'exécution en cours ou non d'un dosage.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Le canal B doit être câblé pour fonctionner en tant que sortie tout-ou-rien.

Procédure

- 1. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Canaux.
- 2. Définir Type d'entrée/sortie du canal B sur Sortie TOR.
- 3. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Sortie TOR.
- 4. Définir Affectation STOR1 sur Prédéterminateur : Livraison/dosage en cours
- 5. Définissez Polarité STOR1 en fonction de votre installation.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

6. Définissez Action sur défaut STOR1 en fonction de votre installation.

Option	Description
Valeur haute	La sortie tout-ou-rien est définie sur Marche (ON) (ouverture de la vanne) en cas de défaut.
Valeur basse	La sortie tout-ou-rien est définie sur Arrêt (OFF) (fermeture de la vanne) en cas de défaut.
Aucune	Aucune action n'est entreprise en cas de défaut. La sortie tout-ou-rien reste dans l'état dans lequel elle était avant le défaut.

Conseil

Lorsque la sortie tout-ou-rien est utilisée pour signaler le dosage, Micro Motion recommande de régler Action sur défaut STOR1 sur Aucune.

8.4.2 Configurer la sortie analogique pour signaler le pourcentage de dosage livré avec PROFIBUS EDD

Vous pouvez configurer la sortie analogique pour qu'elle signale le pourcentage de Cible du dosage délivré. Dans une configuration type, le courant augmente de 4 mA à 20 mA à mesure que le total du dosage augmente entre 0 et 100 %.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Choisir En ligne > Configurer > Paramétrage manuel > Entrées/Sorties > Sortie analogique.
- 2. Définir Variable secondaire est sur Prédéterminateur : Pourcentage dosage.
- 3. Définir Valeur basse d'échelle (LRV) sur le pourcentage de dosage représenté par 4 mA.
- 4. Définir Valeur haute d'échelle (URV) sur le pourcentage de dosage représenté par 20 mA.
- 5. Régler le paramètre Action sur défaut SA sur l'option souhaitée.

Si Valeur basse d'échelle (LRV) est définit sur 0 % et Valeur haute d'échelle (URV) sur 100% : lorsque le dosage démarre, la sortie analogique génère un courant de 4 mA (0 % de la Cible du dosage). Le courant augmente proportionnellement au total de dosage, jusqu'à un courant de 20 mA (100 % de la Cible du dosage).

Remarque

Si Sens d'écoulement est défini sur Bidirectionnel ou Bidirectionnel inverse, le total du dosage peut diminuer dans certaines conditions d'écoulement. Dans ce cas, le courant généré par la sortie analogique diminue proportionnellement.

9

Fonctionnement du dosage avec PROFIBUS EDD

Sujets couverts dans ce chapitre:

- Exécuter un dosage contrôlé par vanne intégrée avec PROFIBUS EDD
- Effectuer une purge manuelle à l'aide de PROFIBUS EDD
- Nettoyer En Place (NEP) avec les paramètres de bus PROFIBUS EDD
- Surveiller et analyser la performance de dosage avec PROFIBUS EDD

9.1 Exécuter un dosage contrôlé par vanne intégrée avec PROFIBUS EDD

Vous pouvez utiliser les communications numériques PROFIBUS pour démarrer un dosage, contrôler un dosage, interrompre et reprendre le dosage, et pour terminer un dosage.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Choisir En ligne > Présentation > Commande de dosage > Contrôle de dosage.
- (En option) Si vous le souhaitez, entrez une autre valeur pour Cible du dosage (dosages tout-ou-rien à un palier, dosages tout-ou-rien à 2 paliers ou dosages à deux têtes de dosage), ou pour Durée cible (dosages temporisés ou dosages temporisés à deux têtes de dosage).
- 3. (En option) Si l'AOC est activée, vous pouvez entrer une autre valeur pour Coeff AOC.

Conseil

En production, Micro Motion recommande de conserver la valeur de Coeff AOC déterminée lors de l'étalonnage AOC. Si vous effectuez des dosages d'étalonnage AOC et qu'une valeur de Coeff AOC d'un appareil similaire est disponible, vous pouvez utiliser cette valeur comme première approximation sur l'appareil en cours. Ceci peut être utile si vous souhaitez empêcher un déversement.

4. Cliquez sur Commencer le dosage.

Le total du dosage est automatiquement remis à zéro et la ou les vannes sont ouvertes. L'indicateur Dosage en cours doit être Activé. S'il ne l'est pas et si l'indicateur Démarrage non OK ou l'indicateur Débit AOC trop élevé est Activé, résolvez la configuration du dosage et réessayez.

5. Contrôlez le dosage à l'aide des valeurs Total dosé et Pourcentage dosage et des indicateurs Etat du dosage.

Valeurs du dosage en cours	Description
Total dosé	 Quantité de dosage au moment actuel. Cette valeur est affectée par Incrémentation : Si Incrémentation est activé, le Total dosé commence à 0 et augmente jusqu'à la Cible du dosage. Si Incrémentation est désactivé, le Total dosé commence à la Cible du dosage et diminue jusqu'à 0.
Pourcentage dosage	Pourcentage de Cible du dosage mesuré jusqu'à l'heure ac- tuelle. Cette valeur n'est pas affectée par Incrémentation.

Indicateur Etat du dosage	Description
Dosage en cours	Un dosage est actuellement en cours d'exécution via la vanne principale. Cet indicateur est actif même lorsque le dosage est interrompu.
Dosage secondaire en cours	Un dosage est actuellement en cours d'exécution via la vanne secondaire. Cet indicateur est actif même lorsque le dosage est interrompu. Il s'applique aux dosages à deux têtes de dosage uniquement.
Durée maxi du dosage dépassée	La durée du dosage actuel a dépassé le temps spécifié pour le paramètre Durée maxi du dosage. Le dosage a été arrêté.
Vanne principale	La vanne principale est ouverte.
Vanne secondaire	La vanne secondaire est ouverte.
Pompe	La pompe est en cours d'exécution.
Purge en cours	Un cycle de purge a été démarré automatiquement ou man- uellement.
Phase tempo de purge	Un cycle de purge automatique est en cours d'exécution et se trouve actuellement dans la phase de temporisation en- tre la fin du dosage et le début de la purge.
Vanne de purge	La vanne de purge est ouverte.

6. (En option) Interrompez le dosage si vous le souhaitez.

Lorsque le dosage est interrompu, vous pouvez modifier la valeur de Cible actuelle, terminer le dosage manuellement avec Terminer le dosage ou redémarrer le dosage avec Reprendre le dosage. Le dosage reprend à la valeur actuelle de Total dosé et de Pourcentage dosage.

Restriction

Vous ne pouvez pas interrompre un dosage temporisé ou un dosage temporisé à deux têtes de dosage.

Important

Pour les dosages tout-ou-rien à 2 paliers, les effets de l'interruption et de la reprise du dosage dépendent de la temporisation des commandes d'ouverture et de fermeture de la vanne et du point auquel le dosage est interrompu.

7. (En option) Utilisez Terminer le dosage pour terminer manuellement le dosage si vous le souhaitez.

Une fois le dosage terminé, il ne peut pas être redémarré.

Conseil

Dans la plupart des cas, vous devez laisser le dosage se terminer automatiquement. Ne terminez le dosage manuellement que lorsque vous envisagez de l'ignorer.

9.1.1 En cas d'échec du démarrage du dosage

Si le démarrage du dosage échoue, vérifiez les indicateurs Démarrage impossible et Débit trop élevé pour corr. autom. erreur jetée

Si l'indicateur Démarrage impossible est Allumé, vérifiez les points suivants :

- Assurez-vous que le dosage est activé.
- Assurez-vous que le dosage précédent est terminé.
- Assurez-vous que Quantité à délivrer ou Heure cible sont réglées sur un nombre positif.
- Assurez-vous que toutes les sorties ont été affectées à la vanne ou la pompe appropriée au type ou à l'option de dosage.
- Assurez-vous que le transmetteur ne présente aucun problème.
- Pour les dosages par tête de dosage double ou les dosages temporisés par tête de dosage double, assurez-vous qu'aucun dosage n'est en cours sur une tête de dosage.

Si l'indicateur Débit trop élevé pour corr. autom. erreur jetée est allumé, le dernier débit mesuré est trop élevé pour permettre le démarrage du dosage. Autrement dit, le coefficient de correction automatique d'erreur de jetée, compensé pour le débit, stipule que la commande de fermeture de vanne devrait être émise avant le démarrage du dosage. Cela peut se produire si le débit a augmenté de façon importante depuis que le coefficient AOC a été calculé. Micro Motion recommande la procédure de récupération suivante :

- 1. Effectuez tout paramétrage requis pour l'exécution de l'étalonnage AOC.
- 2. Dans la fenêtre Contrôle du dosage, cliquez sur Forcer le démarrage.
- 3. Exécuter l'ajustage de la correction automatique d'erreur de jetée.
- 4. Reprendre le dosage de production sur votre système avec le nouveau coefficient AOC.

9.1.2 Si le dosage n'a pas pu se terminer

Si votre dosage s'est terminé anormalement, vérifiez le transmetteur et l'indicateur Durée maxi du dosage dépassée.

En cas de problème pendant le dosage, le transmetteur interrompt automatiquement le dosage.

Si l'indicateur Durée maxi du dosage dépassée est Allumé, cela signifie que le dosage n'a pas atteint son objectif dans la Durée maxi du dosage. Envisagez les possibilités ou actions suivantes :

- Augmentez le débit de votre procédé.
- Vérifiez les liquides avec entraînement d'air (écoulement biphasique) dans votre fluide procédé.
- Contrôlez la présence éventuelle de blocages dans l'écoulement.
- Assurez-vous que les vannes peuvent se fermer à la vitesse voulue.
- Réglez la Durée maxi du dosage sur une valeur plus élevée.
- Désactivez la Durée maxi du dosage en le réglant sur 0.

9.1.3 Effets de Pause et Reprise sur les dosages TOR à deux paliers

Pour les dosages TOR à deux paliers, les effets de la mise en pause et de la reprise dépendent du lieu où les actions Pause et Reprise interviennent par rapport à l'ouverture et la fermeture des vannes principale et secondaire.

Ouvrir grand débit d'abord, Fermer grand débit d'abord

Dans les illustrations suivantes :

- La vanne principale s'ouvre au début du dosage.
- La vanne secondaire s'ouvre au point configuré par l'utilisateur durant le dosage. *T* représente la durée ou quantité configurée pour Ouvrir petit débit.
- La vanne principale se ferme avant la fin du dosage.
- La vanne secondaire se ferme à la fin du dosage.

Figure 11-2: Cas B

Figure 11-3: Cas C Interrompre Reprendre Vanne secondaire Vanne principale Début Ouverture Fermeture Ouverture Quantité à secondaire secondaire délivrer principale (AOC ajustée) Vanne secondaire ouverte tôt

Figure 11-4: Cas D

Ouvrir grand débit **d'abord**, Fermer petit débit **d'abord**

Dans les illustrations suivantes :

- La vanne principale s'ouvre au début du dosage.
- La vanne secondaire s'ouvre au point configuré par l'utilisateur durant le dosage. *T* représente la durée ou quantité configurée pour Ouvrir petit débit.
- La vanne secondaire se ferme avant la fin du dosage.
- La vanne principale se ferme à la fin du dosage.

Figure 11-6: Cas F

Figure 11-7: Cas G

Figure 11-8: Cas H

Ouvrir petit débit d'abord, Fermer grand débit d'abord

Dans les illustrations suivantes :

- La vanne secondaire s'ouvre au début du dosage.
- La vanne principale s'ouvre au point configuré par l'utilisateur durant le dosage. T représente la durée ou quantité configurée pour Ouvrir grand débit.
- La vanne principale se ferme avant la fin du dosage.
- La vanne secondaire se ferme à la fin du dosage.

Figure 11-9: Cas I

Ouvrir petit débit d'abord, Fermer petit débit d'abord

Dans les illustrations suivantes :

- La vanne secondaire s'ouvre au début du dosage.
- La vanne principale s'ouvre au point configuré par l'utilisateur durant le dosage. *T* représente la durée ou quantité configurée pour Ouvrir grand débit.
- La vanne secondaire se ferme avant la fin du dosage.

• La vanne principale se ferme à la fin du dosage.

Figure 11-14: Cas N

9.2 Effectuer une purge manuelle à l'aide de PROFIBUS EDD

La fonction Purge est utilisée pour contrôler une vanne auxiliaire pouvant servir à des tâches autres que le dosage. Par exemple, elle peut servir à l'ajout d'eau ou de gaz dans le conteneur après le dosage, ou au "remplissage." Le débit dans la vanne auxiliaire n'est pas mesuré par le transmetteur.

Prérequis

La fonctionnalité de purge doit être implémentée dans votre système.

Le dosage précédent doit être terminé.

La vanne auxiliaire doit être reliée au fluide que vous souhaitez utiliser (air, eau, azote par exemple).

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Choisissez Présentation > Commande du dosage > Commande du dosage.
- 2. Cliquez sur Commencer la purge.

Les indicateurs Purge en cours et Vanne de purge sont activés.

- 3. Laissez le fluide de purge s'écouler dans votre système pendant la durée appropriée.
- 4. Cliquez sur Terminer la purge

Les indicateurs Purge en cours et Vanne de purge sont désactivés.

9.3 Nettoyer En Place (NEP) avec les paramètres de bus PROFIBUS EDD

La fonction CIP (Clean In Place) permet de forcer l'introduction d'un fluide de nettoyage dans le système. CIP vous permet également de nettoyer les surfaces intérieures des conduites, vannes, buses, etc., sans désassembler l'équipement.

Prérequis

Aucun dosage ne doit être en cours d'exécution.

Le fluide de nettoyage doit pouvoir s'écouler dans l'ensemble du système.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Remplacez le fluide procédé par le fluide de nettoyage.
- 2. Choisir En ligne > Présentation > Commande de dosage > Contrôle de dosage.
- 3. Cliquer sur Commencer le nettoyage.

Le transmetteur ouvre la vanne principale, puis la vanne secondaire si elle est utilisée pour le dosage. Si la fonctionnalité de pompe est activée, la pompe démarre avant l'ouverture de la vanne. L'indicateur Nettoyage en cours s'allume.

- 4. Laissez le fluide de nettoyage s'écouler dans votre système pendant la durée appropriée.
- 5. Cliquer sur Arrêter le nettoyage

Le transmetteur ferme toutes les vannes ouvertes et arrête la pompe, le cas échéant. L'indicateur Nettoyage en cours s'éteint.

6. Remplacez le fluide de nettoyage par le fluide procédé.

9.4 Surveiller et analyser la performance de dosage avec PROFIBUS EDD

Vous pouvez collecter des données de flux détaillées pour un dosage unique, et comparer les données entre plusieurs dosages.

9.4.1 Collecter des informations complémentaires détaillées pour un dosage unique avec PROFIBUS EDD

Lorsque la journalisation du dosage est activée, des données détaillées du dosage le plus récent sont stockées sur le transmetteur. Vous pouvez les récupérer pour les analyser au moyen de communications numériques. Les données détaillées peuvent servir à régler ou dépanner votre environnement de production.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- Choisir En ligne > Configurer > Configuration manuelle > Dosage > Configuration du dosage > Type de dosage.
- 2. Activer Activer enregistrement dosage.
- 3. Exécuter un dosage.
- 4. Désactiver Activer enregistrement dosage une fois la collecte d'informations terminée.

L'enregistrement du dosage contient les données d'un seul dosage, du début du dosage jusqu'à 50 millisecondes après l'arrêt de l'écoulement ou jusqu'à ce que la taille d'enregistrement maximale soit atteinte. Les données sont écrites toutes les 10 millisecondes. Chaque donnée contient la valeur actuelle de Source du débit (variable de procédé utilisée pour mesurer le dosage). L'enregistrement du dosage est limité à 1000 enregistrements ou 10 secondes de dosage. Lorsque la taille maximale est atteinte, l'enregistrement s'arrête mais les données sont disponibles sur le transmetteur jusqu'au démarrage du dosage suivant. L'enregistrement du dosage est supprimé à chaque démarrage d'un dosage.

9.4.2 Analyser la performance de dosage avec les statistiques de dosage et PROFIBUS EDD

Le transmetteur enregistre automatiquement une variété de données concernant chaque dosage. Ces données sont disponibles pour vous assister lors du réglage de votre système.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Choisir En ligne > Présentation > Commande de dosage > Statistiques de dosage.
- 2. (En option) Cliquer sur RAZ statistiques dosage pour démarrer votre analyse avec un nouvel ensemble d'informations de dosage.
- 3. Exécuter des dosages et observer les informations de dosage.

Informations de dos- age	Type de dosage	Description
Moyenne des dosages to- taux	Dosages tout-ou-rien 1 palier, dosages tout-ou- rien 2 paliers et dosages temporisés	Moyenne du total dosé de tous les dosages effectués depuis la dernière remise à zéro des statistiques.
	Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage	Moyenne du total dosé via la tête de dosage n°1 de tous les dosages effec- tués depuis la dernière remise à zéro des statistiques.

Informations de dos- age	Type de dosage	Description
Variance des dosages totaux	Dosages tout-ou-rien 1 palier, dosages tout-ou- rien 2 paliers et dosages temporisés	Variance du total dosé de tous les dosages effectués depuis la dernière remise à zéro des statistiques.
	Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage	Variance du total dosé via la tête de dosage n°1 de tous les dosages effec- tués depuis la dernière remise à zéro des statistiques.
Moyenne des dosages sec- ondaires	Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage uniquement	Moyenne du total dosé via la tête de dosage n°2 de tous les dosages effec- tués depuis la dernière remise à zéro des statistiques.
Variance des dosages sec- ondaires	Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage uniquement	Variance du total dosé via la tête de dosage n°2 de tous les dosages effec- tués depuis la dernière remise à zéro des statistiques.

10 Configurer un dosage contrôlé par vanne intégrée avec les paramètres de bus PROFIBUS

Sujets couverts dans ce chapitre:

- Configurer un dosage contrôlé par vanne intégrée avec les paramètres de bus PROFIBUS
- Configurer les options de dosage avec les paramètres de bus PROFIBUS
- Configurer le contrôle de dosage avec les paramètres de bus PROFIBUS (en option)
- Configurer le rapport de dosage avec les paramètres de bus PROFIBUS (en option)

10.1 Configurer un dosage contrôlé par vanne intégrée avec les paramètres de bus PROFIBUS

Configurez le type de dosage approprié à votre application.

Conseil

Le dosage tout-ou-rien à une étape convient à la plupart des applications. Utilisez ce type de dosage, sauf si vous devez explicitement utiliser un autre type de dosage. Dans la plupart des cas, le transmetteur est configuré en usine pour un dosage tout-ou-rien à une étape et est opérationnel avec une configuration minimale sur site.

10.1.1 Configurer un dosage TOR à un seul palier avec des paramètres de bus PROFIBUS

Configurez un dosage tout-ou-rien à une étape lorsque vous souhaitez doser un seul conteneur à partir d'une seule vanne. La vanne sera ouverte jusqu'à ce que la Cible du dosage soit atteinte.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Définir STOR1 précision sur Vanne principale.
 - b. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

b. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

c. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

d. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

3. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

4. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le dosage	Activé
Autoriser le double dosage	Désactivé
Corr. autom. d'erreur de jetée	Activé
Activer la purge	Désactivé
Autoriser le dosage temporisé	Désactivé
Type de dosage	1 palier tout-ou-rien

Conseil

Micro Motion recommande vivement d'appliquer une AOC (Automatic Overshoot Compensation). Une fois activée et étalonnée, l'AOC améliore la précision et la répétabilité du dosage.

5. Définissez Incrémentation sur l'option souhaitée.

Incrémentation contrôle la façon dont le total dosé est calculé et affiché.

Option	Description
Activé	Le total du dosage commence à 0 et augmente jusqu'à la Cible du dosage.
Désactivé	Le total du dosage commence à la Cible du dosage et réduit jusqu'à 0.

6. Définissez la Cible du dosage sur la quantité à laquelle le dosage sera terminé.

Entrez la valeur dans les unités de mesure configurées pour la Source du débit.

7. Définissez la Durée de dosage max sur le nombre de secondes auquel le dosage sera terminé.

Si la quantité à délivrer configurée n'a pas été atteinte normalement avant la fin de la durée spécifiée, le dosage est arrêté et une alarme Absence produit est générée. Pour désactiver la fonction de temporisation du dosage, définissez Durée de dosage max sur 0.

La valeur par défaut de Durée de dosage max est 0 (désactivé). La plage est comprise entre 0 seconde et 800 secondes.

8. Définissez Durée de dosage mesurée sur l'option souhaitée.

Durée de dosage mesurée contrôle la façon selon laquelle la durée du dosage est mesurée.

Option	Description
Arrêts du débit	La durée du dosage est incrémentée jusqu'à ce que le transmetteur dé- tecte que le débit est arrêté ou après la fermeture de la vanne.
Fermeture de la vanne	La durée du dosage est incrémentée jusqu'à ce que le transmetteur con- figurée la sortie tout-ou-rien comme requis pour fermer la vanne.

Exemple : Configuration d'un dosage à un palier TOR

Important

Cet exemple utilise des paramètres standard ou typiques pour les paramètres requis. Votre application pourra avoir besoin de paramètres différents. Consulter les paramètres de bus PROFIBUS pour plus d'informations sur les types de données et les codes des entiers.

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Dosage	33	110	Définit STOR1 précision sur Vanne principale
Dosage	34	1	Définit Polarité STOR1 précision sur Niveau haut actif
Mesure	21	0	Définit Sens d'écoulement sur Normal
Mesure	5	1318	Définit Unités de débit massique sur g/s
Mesure	11	1347	Définit Unités de débit volumique sur m3/s
Dosage	5	0	Définit Source du débit sur Débit massique
Dosage	17	0	Définit Activer tête de dosage double sur Désactivé
Dosage	15	0	Définit Activer dosage temporisé sur Désactivé
Dosage	7	1	Définit Type de dosage sur 1 palier tout-ou-rien
Dosage	8	1	Définit Incrémentation sur Activé
Dosage	6	100.00	Définit Quantité à délivrer sur 100 g
Dosage	14	1.00	Définit Durée maxi du dosage sur 1 s
Dosage	19	1	Définit Durée dosage mesurée sur Arrêt écoulement

Postrequis

Options des dosages à un palier TOR :

- Configuration de la correction automatique d'erreur de jetée (AOC). Si l'AOC est activée, vérifiez qu'elle est correctement configurée et étalonnée pour votre application.
- Implémentation de la fonction de purge.
- Implémentation de la fonction de pompe.

10.1.2 Configurer un dosage TOR à deux paliers avec des paramètres de bus PROFIBUS

Configurez un dosage tout-ou-rien à deux étapes lorsque vous souhaitez doser un seul conteneur à partir de deux vannes.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Définir STOR1 précision sur Vanne principale.
 - b. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- c. Définir STOR2 précision sur Vanne secondaire.
- d. Définissez Polarité STOR2 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.

Option	Description
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

b. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

c. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

d. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

3. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

4. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le dosage	Activé
Autoriser le double dosage	Désactivé
Corr. autom. d'erreur de jetée	Activé
Activer la purge	Désactivé
Autoriser le dosage temporisé	Désactivé
Type de dosage	2 paliers tout-ou-rien

Conseil

Micro Motion recommande vivement d'appliquer une AOC (Automatic Overshoot Compensation). Une fois activée et étalonnée, l'AOC améliore la précision et la répétabilité du dosage.

5. Définissez Incrémentation sur l'option souhaitée.

Incrémentation contrôle la façon dont le total dosé est calculé et affiché.

Option	Description
Activé	Le total du dosage commence à 0 et augmente jusqu'à la Cible du dosage.
Désactivé	Le total du dosage commence à la Cible du dosage et réduit jusqu'à 0.

6. Définissez Configurer par sur l'option souhaitée.

Configurer par contrôle la façon selon laquelle la temporisation de la commande est configurée.

Option	Description
% quantité à délivrer	 La temporisation d'ouverture et de fermeture de la vanne est configurée en pourcentage de la Cible du dosage. Par exemple : Ouverture de vanne = 0 % : la vanne s'ouvre lorsque le total du dosage actuel correspond à 0 % de la Cible du dosage. Fermeture de vanne = 90 % : la vanne se ferme lorsque le total du dosage actuel correspond à 90 % de la Cible du dosage.
Quantité	 La temporisation d'ouverture et de fermeture de la vanne est configurée en fonction de l'unité de mesure configurée. Par exemple : Ouverture de vanne = 0 g : la vanne s'ouvre lorsque le total du dosage actuel est de 0 g. Fermeture de vanne = 50 g : la vanne se ferme lorsque le total du dosage actuel est de 50 g inférieur à la Cible du dosage.

7. Définissez la Cible du dosage sur la quantité à laquelle le dosage sera terminé.

Entrez la valeur dans les unités de mesure configurées pour la Source du débit.

8. Définissez la Durée de dosage max sur le nombre de secondes auquel le dosage sera terminé.

Si la quantité à délivrer configurée n'a pas été atteinte normalement avant la fin de la durée spécifiée, le dosage est arrêté et une alarme Absence produit est générée. Pour désactiver la fonction de temporisation du dosage, définissez Durée de dosage max sur 0.

La valeur par défaut de Durée de dosage max est 0 (désactivé). La plage est comprise entre 0 seconde et 800 secondes.

9. Définissez Durée de dosage mesurée sur l'option souhaitée.

Durée de dosage mesurée contrôle la façon selon laquelle la durée du dosage est mesurée.

Option	Description
Arrêts du débit	La durée du dosage est incrémentée jusqu'à ce que le transmetteur dé- tecte que le débit est arrêté ou après la fermeture de la vanne.
Fermeture de la vanne	La durée du dosage est incrémentée jusqu'à ce que le transmetteur con- figurée la sortie tout-ou-rien comme requis pour fermer la vanne.

10. Définissez Ouvrir primaire, Ouvrir secondaire, Fermer primaire et Fermer secondaire sur les options souhaitées.

Ces valeurs contrôlent le point du dosage auquel les vannes primaire et secondaire s'ouvrent et se ferment. Elles sont configurées par quantité ou pourcentage de la cible, tel que contrôlé par le paramètre Configurer par.

Ouvrir primaire ou Ouvrir secondaire doit être configuré pour ouvrir une vanne au début du dosage. Les deux peuvent être ouvertes au début du dosage si vous le souhaitez. Si vous configurez l'ouverture ultérieure d'une vanne, l'autre est automatiquement réinitialisée pour s'ouvrir au début du dosage.

Fermer primaire ou Fermer secondaire doit être configuré pour fermer une vanne à la fin du dosage. Les deux peuvent être fermées à la fin du dosage si vous le souhaitez. Si vous configurez la fermeture anticipée d'une vanne, l'autre est automatiquement réinitialisée pour se fermer à la fin du dosage.

Exemple : Configuration d'un dosage à deux paliers TOR

Important

Cet exemple utilise des paramètres standard ou typiques pour les paramètres requis. Votre application pourra avoir besoin de paramètres différents. Consulter les paramètres de bus PROFIBUS pour plus d'informations sur les types de données et les codes des entiers.

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Dosage	33	110	Définit STOR1 précision sur Vanne principale
Dosage	34	1	Définit Polarité STOR1 précision sur Niveau haut actif
Dosage	35	111	Définit STOR2 précision sur Vanne secondaire
Dosage	36	1	Définit Polarité STOR2 précision sur Niveau haut actif
Mesure	21	0	Définit Sens d'écoulement sur Normal
Mesure	5	1318	Définit Unités de débit massique sur g/s
Mesure	11	1347	Définit Unités de débit volumique sur m3/s
Dosage	5	0	Définit Source du débit sur Débit massique
Dosage	17	0	Définit Activer tête de dosage double sur Désactivé
Dosage	15	0	Définit Activer dosage temporisé sur Désactivé
Dosage	7	2	Définit Type de vanne sur Tout-ou-rien deux paliers
Dosage	8	1	Définit Incrémentation sur Activé
Dosage	9	0	Définit Mode de configuration sur % quantité à délivrer
Dosage	6	100	Définit Quantité à délivrer sur 100 g
Dosage	14	1.00	Définit Durée maxi du dosage sur 1 s

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Dosage	19	1	Définit Durée dosage mesurée sur Arrêt écoulement
Dosage	10	0.00	Définit Ouvrir principale sur 0 % de la Cible du dosage
Dosage	12	80.00	Définit Fermer principale sur 80 % de la Cible du dosage
Dosage	11	50.00	Définit Ouvrir secondaire sur 50 % de la Cible du dosage
Dosage	13	100.00	Définit Fermer secondaire sur 100 % de la Cible du dos- age

Postrequis

L'option suivante est disponible pour les dosages à deux paliers tout-ou-rien :

 Configuration de la correction automatique d'erreur de jetée (AOC). Si l'AOC est activée, vérifiez qu'elle est correctement configurée et étalonnée pour votre application.

Séquences d'ouverture et de fermeture de vanne pour les dosages TOR à deux paliers

Les figures suivantes illustrent l'ouverture et la fermeture des vannes principale et secondaire, contrôlées par la configuration de Ouverture grand débit, Ouverture petit débit, Fermer grand débit, et Fermer petit débit.

Ces illustrations considèrent que le dosage s'effectue du début à la fin sans interruption.

Figure 10-4: Ouvrir petit débit d'abord, Fermer petit débit d'abord

Effets du Mode de configurationsur l'ouverture et la fermeture de la vanne

Le Mode de configuration contrôle la façon dont les valeurs Ouverture grand débit, Ouverture petit débit, Fermeture grand débit, et Fermeture petit débit sont configurées et appliquées.

- Lorsque le Mode de configuration = % Cible, le transmetteur ajoute les valeurs d'ouverture et de fermeture de vanne configurées à 0 %.
- Lorsque le Mode de configuration = Quantité, le transmetteur ajoute les valeurs d'ouverture configurées à 0 et soustrait les valeurs de fermeture de vanne configurées de la Quantité à délivrer.

Exemple : Mode de configuration et commandes d'ouverture/fermeture de la vanne

Quantité à délivrer = 200 g. Vous voulez que la vanne à grand débit s'ouvre au début du conditionnement et se ferme à la fin du conditionnement. Vous voulez que la vanne à petit débit s'ouvre après que 10 g ont été délivrés, et se ferme après que 190 g ont été délivrés. Voir *Tableau 10-1* pour découvrir les paramètres qui produisent ce résultat.

Mode de configuration	Valeurs d'ouverture et de fermeture de la vanne
% quantité à délivrer	 Ouverture grand débit = 0 % Ouverture petit débit = 5 % Fermeture petit débit = 95 % Fermeture grand débit = 100 %

Tableau 10-1: Mode de configuration et configuration de la vanne

Mode de configuration	Valeurs d'ouverture et de fermeture de la vanne
Quantité	 Ouverture grand débit = 0 g Ouverture petit débit = 10 g Fermeture petit débit = 10 g Fermeture grand débit = 0 g

Tableau 10-1: Mode de configuration et configuration de la vanne (suite)

10.1.3 Configurer un dosage temporisé avec les paramètres de bus PROFIBUS

Configurez un dosage minuté à une étape lorsque vous souhaitez doser un seul conteneur à partir d'une seule vanne. La vanne restera ouverte pendant le nombre de secondes indiqué.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Définir STOR1 précision sur Vanne principale.
 - b. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.

Option	Description
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

b. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

c. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

d. Définissez les autres options de débit souhaitées.

```
Conseil
```

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

3. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le dosage	Activé
Incrémentation	Activé
Autoriser le double dosage	Désactivé
Corr. autom. d'erreur de jetée	Désactivé
Activer la purge	Désactivé
Autoriser le dosage temporisé	Activé
Type de dosage	1 palier tout-ou-rien

4. Définissez la Durée cible sur le nombre de secondes d'exécution du dosage.

Exemple : Configuration d'un dosage temporisé

Important

Cet exemple utilise des paramètres standard ou typiques pour les paramètres requis. Votre application pourra avoir besoin de paramètres différents. Consulter les paramètres de bus PROFIBUS pour plus d'informations sur les types de données et les codes des entiers.

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Dosage	33	110	Définit STOR1 précision sur Vanne principale
Dosage	34	1	Définit Polarité STOR1 précision sur Niveau haut actif
Mesure	21	0	Définit Sens d'écoulement sur Normal
Mesure	5	1318	Définit Unités de débit massique sur g/s
Mesure	11	1347	Définit Unités de débit volumique sur m3/s
Dosage	5	0	Définit Origine du comptage sur Débit massique
Dosage	17	0	Définit Activer tête de dosage double sur Désactivé
Dosage	15	1	Définit Activer dosage temporisé sur Activé
Dosage	7	1	Définit Type de vanne sur Tout-ou-rien
Dosage	8	1	Définit Incrémentation sur Activé
Dosage	16	15.00	Définit Valeur cible sur 15 s

Postrequis

L'option suivante est disponible pour les dosages temporisés :

Implémentation de la fonction de purge.

10.1.4 Configurer un dosage à tête de dosage double avec les paramètres de bus PROFIBUS

Configurez un dosage à double tête de dosage minuté lorsque vous souhaitez doser deux conteneurs en alternance à l'aide de deux têtes de dosage. Chaque vanne sera ouverte jusqu'à ce que la Cible du dosage soit atteinte.

Important

La Cible du dosage configurée s'applique aux deux têtes de dosage.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Définir STOR1 précision sur Vanne principale.
 - b. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- c. Définir STOR2 précision sur Vanne secondaire.
- d. Définissez Polarité STOR2 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- 2. Configurer les paramètres de mesure du débit :
 - a. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

b. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

c. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

d. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

3. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

4. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le dosage	Activé
Incrémentation	Activé
Autoriser le double dosage	Activé
Corr. autom. d'erreur de jetée	Activé
Activer la purge	Désactivé
Autoriser le dosage temporisé	Désactivé
Type de dosage	1 palier tout-ou-rien

Conseil

Micro Motion recommande vivement d'appliquer une AOC (Automatic Overshoot Compensation). Une fois activée et étalonnée, l'AOC améliore la précision et la répétabilité du dosage.

5. Définissez la Cible du dosage sur la quantité à laquelle le dosage sera terminé.

Remarque

La Cible du dosage configurée s'applique aux deux têtes de dosage.

6. Définissez la Durée de dosage max sur le nombre de secondes auquel le dosage sera terminé.

Si la quantité à délivrer configurée n'a pas été atteinte normalement avant la fin de la durée spécifiée, le dosage est arrêté et une alarme Absence produit est générée. Pour désactiver la fonction de temporisation du dosage, définissez Durée de dosage max sur 0.

La valeur par défaut de Durée de dosage max est 0 (désactivé). La plage est comprise entre 0 seconde et 800 secondes.

7. Définissez Durée de dosage mesurée sur l'option souhaitée.

Durée de dosage mesurée contrôle la façon selon laquelle la durée du dosage est mesurée.

Option	Description
Arrêts du débit	La durée du dosage est incrémentée jusqu'à ce que le transmetteur dé- tecte que le débit est arrêté ou après la fermeture de la vanne.
Fermeture de la vanne	La durée du dosage est incrémentée jusqu'à ce que le transmetteur con- figurée la sortie tout-ou-rien comme requis pour fermer la vanne.

Exemple : Configuration d'une tête de dosage double

Important

Cet exemple utilise des paramètres standard ou typiques pour les paramètres requis. Votre application pourra avoir besoin de paramètres différents. Consulter les paramètres de bus PROFIBUS pour plus d'informations sur les types de données et les codes des entiers.

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Dosage	33	110	Définit STOR1 précision sur Vanne principale
Dosage	34	1	Définit Polarité STOR1 précision sur Niveau haut actif
Dosage	35	111	Définit STOR2 précision sur Vanne secondaire
Dosage	36	1	Définit Polarité STOR2 précision sur Niveau haut actif
Mesure	21	0	Définit Sens d'écoulement sur Normal
Mesure	5	1318	Définit Unités de débit massique sur g/s
Mesure	11	1347	Définit Unités de débit volumique sur m3/s
Dosage	5	0	Définit Origine du comptage sur Débit massique
Dosage	17	1	Définit Activer tête de dosage double sur Activé
Dosage	15	0	Définit Activer dosage temporisé sur Désactivé
Dosage	7	1	Définit Type de vanne sur Tout-ou-rien 1 palier
Dosage	8	1	Définit Incrémentation sur Activé
Dosage	6	100,00	Définit Quantité à délivrer sur 100 g
Dosage	14	1,00	Définit Durée maxi du dosage sur 1 s
Dosage	19	1	Définit Durée dosage mesurée sur Arrêt écoulement

Postrequis

Options pour les dosages à tête de dosage double :

 Configuration de la correction automatique d'erreur de jetée (AOC). Si l'AOC est activée, vérifiez qu'elle est correctement configurée et étalonnée pour votre application.

10.1.5 Configurer un dosage temporisé à tête de dosage double avec les paramètres de bus PROFIBUS

Configurez un dosage à double tête de dosage lorsque vous souhaitez doser deux conteneurs en alternance à l'aide de deux têtes de dosage. Chaque vanne restera ouverte pendant le nombre de secondes indiqué.

Important

La Durée cible configurée s'applique aux deux têtes de dosage.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Définir STOR1 précision sur Vanne principale.
 - b. Définissez Polarité STOR1 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

- c. Définir STOR2 précision sur Vanne secondaire.
- d. Définissez Polarité STOR2 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

2. Configurer les paramètres de mesure du débit :

a. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui correspond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirection- nel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flè- che sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

b. Définissez les Unités de débit massique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit massique, l'unité de masse correspondante est utilisée pour mesurer votre dosage.

c. Définissez les Unités de débit volumique sur l'option souhaitée.

Si vous définissez la Source du débit sur Débit volumique, l'unité de volume correspondante est utilisée pour mesurer votre dosage.

d. Définissez les autres options de débit souhaitées.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

3. Définissez la Source du débit pour la variable de procédé à utiliser pour mesurer ce dosage.

Option	Description
Débit massique	La variable de procédé de débit massique mesuré par le transmetteur
Débit volumique	La variable de procédé de débit volumique mesuré par le transmetteur

4. Définissez ou vérifiez les paramètres suivants :

Paramètre	Réglage
Autoriser le dosage	Activé
Incrémentation	Activé
Autoriser le double dosage	Activé

Paramètre	Réglage
Corr. autom. d'erreur de jetée	Désactivé
Activer la purge	Désactivé
Autoriser le dosage temporisé	Activé
Type de dosage	1 palier tout-ou-rien

5. Définissez la Durée cible sur le nombre de secondes d'exécution du dosage.

Remarque

La Durée cible configurée s'applique aux deux têtes de dosage.

Exemple : Configuration d'un dosage temporisé à tête de dosage double

Important

Cet exemple utilise des paramètres standard ou typiques pour les paramètres requis. Votre application pourra avoir besoin de paramètres différents. Consulter les paramètres de bus PROFIBUS pour plus d'informations sur les types de données et les codes des entiers.

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Dosage	33	110	Définit STOR1 précision sur Vanne principale
Dosage	34	1	Définit Polarité STOR1 précision sur Niveau haut actif
Dosage	35	111	Définit STOR2 précision sur Vanne secondaire
Dosage	36	1	Définit Polarité STOR2 précision sur Niveau haut actif
Mesure	21	0	Définit Sens d'écoulement sur Normal
Mesure	5	1318	Définit Unités de débit massique sur g/s
Mesure	11	1347	Définit Unités de débit volumique sur m3/s
Dosage	5	0	Définit Origine du comptage sur Débit massique
Dosage	17	1	Définit Activer tête de dosage double sur Activé
Dosage	15	1	Définit Activer dosage temporisé sur Activé
Dosage	7	1	Définit Type de vanne sur Tout-ou-rien
Dosage	8	1	Définit Incrémentation sur Activé
Dosage	16	15,00	Définit Valeur cible sur 15 s

10.2 Configurer les options de dosage avec les paramètres de bus PROFIBUS

Selon le type de dosage, vous pouvez configurer et implémenter une AOC, la fonction de purge ou la fonction de pompage.

10.2.1 Configurer et mettre en œuvre la correction automatique d'erreur de jetée (AOC) avec les paramètres de bus PROFIBUS

La correction automatique d'erreur de jetée (AOC) est utilisée pour ajuster la temporisation du dosage afin de compenser le temps requis pour transmettre la commande de fermeture de la vanne afin que celle-ci se ferme complètement.

Prérequis

Veillez à démarrer à partir de la configuration d'usine par défaut.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Choisissez ProLink > Configuration > Dosage.
- 2. Choisissez le type d'AOC que vous voulez mettre en œuvre.

Option	Description
Fixe	Fixe : la vanne se fermera au point défini par la Quantité à délivrer moins la valeur spécifiée pour le paramètre Valeur fixe corr. erreur jetée. Utilisez cette option uniquement si la valeur "d'avertissement" est déjà connue.
Sur-dos- age	Définit la direction utilisée par l'algorithme AOC pour approcher de la quantité à délivrer. L'algorithme AOC commence par estimer une valeur de sur-dosage et réduit le sur-dosage par des dosages d'ajustage successifs.
Sous-dos- age	Définit la direction utilisée par l'algorithme AOC pour approcher de la quantité à délivrer. L'algorithme AOC commence par estimer une valeur de sous-dosage et réduit le sous-dosage par des dosages d'ajustage successifs.

Conseil

L'option Fixe n'est généralement pas utilisée. Si vous choisissez Fixe, le transmetteur fonctionnera comme un prédéterminateur hérité. Dans les applications classiques, les autres options AOC fournissent une précision et une répétabilité améliorées.

Restriction

Les optionsFixe et Sur-dosage ne sont pas prises en charge pour les dosages à tête double.

- 3. Pour mettre en oeuvre une AOC fixe :
 - a. Désactiver Activer AOC.
 - b. Régler Algorithme AOC sur Fixe
 - c. Régler Valeur fixe corr. erreur jetée sur la valeur désirée.

La valeur par défaut est 0, mesurée en unités de procédé.

Le transmetteur fermera la vanne lorsque le total dosé actuel sera égal à la Quantité à délivrer moins la valeur prévue (en unités de procédé).

- 4. Pour mettre en oeuvre Sur-dosage ou Sous-dosage :
 - a. Assurez-vous que la case Activer AOC est cochée.

- b. Réglez Algorithme AOC sur Sur-dosage ou Sous-dosage.
- c. Réglez nombre de dosages AOC sur le nombre de dosages qui seront utilisés pour l'ajustage AOC.

La valeur par défaut est 10. La plage s'étend de 2 à 32.

Conseil

Micro Motion recommande d'utiliser la valeur par défaut, à moins que vous ayez des exigences particulières liées à vos applications.

Important

Ne modifiez pas les valeurs de Limite de modification AOC ni de Taux de convergence AOC à moins que vous ne travailliez avec le service client de Micro Motion. Ces paramètres sont utilisés pour ajuster le fonctionnement de l'algorithme AOC aux exigences particulières liées aux applications.

Exemple : Configuration de la correction automatique d'erreur de jetée (AOC)

Important

Cet exemple utilise des paramètres standard ou typiques pour les paramètres requis. Votre application pourra avoir besoin de paramètres différents. Consulter les paramètres de bus PROFIBUS pour plus d'informations sur les types de données et les codes des entiers.

AOC fixe :

Bloc	Index	Valeur (déci- male)	Description
Dosage	21	0	Définit Corr. autom. d'erreur de jetée sur Désactivé
Dosage	22	2	Définit Gestion de l'erreur de jetée sur Fixe
Dosage	26	0	Définit Valeur fixe corr. erreur jetée sur 0

Sur-dosage ou sous-dosage :

Bloc	Index	Valeur (déci- male)	Description
Dosage	21	1	Définit Corr. autom. d'erreur de jetée sur Activé
Dosage	22	0	Définit Algorithme AOC sur Sur-dosage
Dosage	23	10	Définit Nombre de dosages AOC sur 10 dosages

Postrequis

Si vous avez réglé l'Algorithme AOC sur Sur-dosage ou Sous-dosage, vous devez exécuter l'ajustage AOC.

Effectuer un ajustage AOC à l'aide des paramètres de bus PROFIBUS

L'ajustage AOC est utilisé pour calculer la valeur d'AOC (Correction automatique d'erreur de jetée) des données réelles du dosage. Si vous avez réglé l'Algorithme AOC sur Sur-dosage ou Sous-dosage, vous devez exécuter l'ajustage AOC.

Cet ajustage peut être réalisé de deux manières :

- Standard : l'ajustage est effectué manuellement. Le coefficient AOC est calculé à partir des données de dosage obtenues pendant cet ajustage, et le même coefficient AOC est appliqué jusqu'au prochain ajustage.
- Continue : l'ajustage est exécuté continuellement et automatiquement, et le coefficient AOC est mis à jour en continu, sur la base des données de dosage de la dernière série de dosages.

Conseil

Pour des procédés stables, Micro Motion recommande l'ajustage AOC standard. Si nécessaire, testez les deux méthodes et choisissez celle qui fournit les meilleurs résultats.

Exécuter l'ajustage de la correction automatique d'erreur de jetée standard

L'ajustage AOC standard est utilisé pour générer un coefficient AOC constant.

Prérequis

Le Nombre de dosages AOC doit être correctement défini. Micro Motion recommande d'utiliser la valeur par défaut (10), à moins que vous ayez des exigences particulières liées à vos applications.

Seuil de coupure du débit massique ou Seuil de coupure du débit volumique doivent être réglés correctement en fonction de votre environnement.

- Si Origine d'écoulement est réglé sur Débit massique, voir Section 15.2.3.
- Si Origine d'écoulement est réglé sur Débit volumique, voir Section 15.3.2.

Votre système doit être prêt à exécuter des dosages, et vous devez savoir comment faire.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Pour calibrer la vanne principale (tous types de dosages) :
 - a. Écrire 1 dans Démarrer l'ajustage AOC (bloc de dosage, Index 99).
 - b. Exécuter deux ou plusieurs dosages d'ajustage jusque'au nombre indiqué dans le Nombre de dosages AOC.

Remarque

Vous pouvez exécuter plusieurs dosages d'ajustage si vous le souhaitez. Le coefficient de correction est calculé à partir des dosages les plus récents.

Conseil

Généralement, les premiers dosages sont un peu sur-dosés ou sous-dosés en raison des paramètres d'usine. Pendant l'ajustage, les dosages convergent vers la Quantité à délivrer.

- c. Quand les totaux dosés sont satisfaisants, écrire 1 dans Enregistrer l'ajustage AOC (bloc de dosage, Index 101).
- 2. Pour ajuster la vanne secondaire (dosages à tête de dosage double) :
 - a. Écrire 1 dans Démarrer l'ajustage AOC secondaire (bloc de dosage, Index 100).
 - b. Exécuter deux ou plusieurs dosages d'ajustage jusque'au nombre indiqué dans le Nombre de dosages AOC.

Le transmetteur exécute automatiquement des dosages via la vanne secondaire.

Remarque

Vous pouvez exécuter plusieurs dosages d'ajustage si vous le souhaitez. Le coefficient de correction est calculé à partir des dosages les plus récents.

Conseil

Généralement, les premiers dosages sont un peu sur-dosés ou sous-dosés en raison des paramètres d'usine. Pendant l'ajustage, les dosages convergent vers la Quantité à délivrer.

c. Quand les totaux dosés sont satisfaisants, écrire 1 dans Enregistrer l'ajustage AOC secondaire (bloc de dosage, Index 102).

Le coefficient AOC actuel est affiché dans la fenêtre Démarrer le doseur. Si vous exécutez un dosage par tête de dosage double, la fenêtre Démarrer le doseur affiche le coefficient AOC des vannes principale et secondaire. Ces coefficients seront appliqués tant que l'AOC sera activée.

Remarque

En ce qui concerne les dosages TOR 2 paliers, la valeur d'AOC est appliquée à la vanne qui se ferme lorsque l'objectif est atteint. Si le dosage est configuré pour fermer les deux vannes lorsque l'objectif est atteint, la valeur d'AOC est appliquée aux deux.

Conseil

Micro Motion recommande de répéter l'ajustage AOC dans les cas suivants :

- Un élément du système de mesurage a été remplacé ou ajusté.
- Le débit change de façon importante.
- La précision du dosage est sensiblement inférieure aux attentes.
- Le Seuil de coupure du débit massique ou le Seuil de coupure du débit volumique ont été modifiés.

Configurer l'ajustage continu de la correction automatique d'erreur de jetée

L'ajustage AOC continu est utilisé pour mettre à jour le coefficient AOC en continu, sur la base des données de dosage de la dernière série de dosages.

Prérequis

Le Nombre de dosages AOC doit être correctement défini. Micro Motion recommande d'utiliser la valeur par défaut (10), à moins que vous ayez des exigences particulières liées à vos applications.

Votre système doit être prêt à exécuter des dosages, et vous devez savoir comment faire.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

1. Pour ajuster la vanne principale (tous types de dosages), écrire 1 dans Démarrer l'ajustage AOC (bloc de dosage, Index 99). Pour ajuster la vanne secondaire (tête de dosage double), écrire 1 dans Démarrer l'ajustage AOC secondaire (bloc de dosage, Index 100).

Vous pouvez paramétrer un ajustage AOC pour chaque vanne individuellement ou pour les deux.

2. Commencer les dosages de production.

Le transmetteur recalcule le(s) coefficient(s) AOC après chaque dosage, sur la base de *x* dosages où *x* est le nombre indiqué dans Nombre de dosages AOC. Les valeurs actuelles sont affichées dans la fenêtre Exécuter le doseur. Si la configuration ou les conditions du procédé ont changé, l'ajustage AOC continu compense ce changement. Cependant, l'ajustement prend place après plusieurs dosages ; ainsi, l'AOC demande quelques dosages pour rattraper les valeurs.

Conseil

À tout instant pendant l'exécution de l'ajustage de la correction automatique d'erreur de jetée standard, vous pouvez écrire 1 dans Enregistrer l'ajustage AOC (bloc de dosage, Index 101) ou écrire 1 dans Enregistrer l'ajustage AOC secondaire (bloc de dosage, Index 102). Le coefficient AOC actuel sera enregistré et appliqué à tous les dosages suivants via la vanne correspondante. En d'autres termes, cette action change donc l'ajustage continu de l'erreur de jetée de cette vanne en ajustage standard.

10.2.2 Configurer la fonctionnalité de purge avec les paramètres de bus PROFIBUS

La fonction Purge est utilisée pour contrôler une vanne auxiliaire pouvant servir à des tâches autres que le dosage. Par exemple, elle peut servir à l'ajout d'eau ou de gaz dans le conteneur après le dosage, ou au "remplissage." Le débit dans la vanne auxiliaire n'est pas mesuré par le transmetteur. Vous pouvez configurer la fonction de purge pour la commande de purge automatique ou manuelle. Si vous choisissez la commande automatique, la vanne auxiliaire est ouverte après chaque dosage, puis fermée une fois la durée de purge configurée écoulée.

Restriction

La fonction de purge n'est pas prise en charge dans les dosages à double tête de dosage ou les dosages minutés à double tête de dosage.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurez le canal B pour fonctionner en tant que sortie tout-ou-rien :
 - a. Définir Type d'entrée/sortie du canal B sur Sortie TOR.
 - b. Définir Affectation STOR1 sur Prédéterminateur : Vanne de purge.

c. Définissez Polarité STOR1 en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

d. Définissez Action sur défaut STOR1 en fonction de votre installation.

Option	Description
Valeur haute	La sortie tout-ou-rien est définie sur Marche (ON) (ouver- ture de la vanne) en cas de défaut.
Valeur basse	La sortie tout-ou-rien est définie sur Arrêt (OFF) (ferme- ture de la vanne) en cas de défaut.
Aucune	Aucune action n'est entreprise en cas de défaut. La sortie tout-ou-rien reste dans l'état dans lequel elle était avant le défaut.

- 2. Configurez la purge :
 - a. Activez Activer purge.
 - b. Définissez le Mode purge sur l'option souhaitée.

Option	Description
Auto	Une purge est automatiquement exécutée après chaque dosage.
Manuel	Les purges doivent être démarrées et arrêtées man- uellement.

Conseil

Lorsque le Mode purge est défini sur Auto, une commande manuelle de la vanne de purge est toujours possible. Vous pouvez démarrer une purge manuellement et l'arrêter manuellement, ou vous pouvez laisser le soin au transmetteur de l'arrêter une fois la Durée de purge écoulée. Si une purge est démarrée automatiquement, vous pouvez l'arrêter manuellement.

c. Si vous définissez le Mode purge sur Auto, définissez le Délai de purge sur le nombre de secondes que le transmetteur devra attendre, une fois le dosage terminé, avant d'ouvrir la vanne de purge.

La valeur par défaut du Délai de purge est de 2 secondes.

d. Si vous définissez le Mode purge sur Auto, définissez la Durée de purge sur le nombre de secondes pendant lesquelles le transmetteur devra maintenir la vanne de purge ouverte.

La valeur par défaut de la Durée de purge est de 1 seconde. La plage est comprise entre 0 seconde et 800 secondes.

Conseil

Le dosage suivant ne peut pas commencer tant que la vanne de purge n'est pas fermée.

Exemple : Configuration de la fonctionnalité de purge

Important

Cet exemple utilise des paramètres standard ou typiques pour les paramètres requis. Votre application pourra avoir besoin de paramètres différents. Consulter les paramètres de bus PROFIBUS pour plus d'informations sur les types de données et les codes des entiers.

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Dosage	83	4	Définit Type d'entrée/sortie du canal B sur Sortie TOR
Dosage	70	110	Définit Affectation STOR1 sur Vanne principale
Dosage	71	1	Définit Polarité STOR1 sur Niveau haut actif
Dosage	72	4	Définit Action sur défaut STOR1 sur Aucun
Dosage	29	1	Active Activer purge
Dosage	30	0	Définit Mode de purge sur Auto
Dosage	31	3.00	Définit Temporisation avant purge sur 3 secondes
Dosage	32	2.00	Définit Temps de purge sur 2 secondes

10.2.3 Configurer la fonctionnalité de pompe avec les paramètres de bus PROFIBUS

La fonction Pompe est utilisée pour augmenter la pression pendant le dosage en démarrant une pompe en amont juste avant de démarrer le dosage.

Restriction

La fonction de purge n'est pas prise en charge dans les dosages tout-ou-rien à deux étapes, les dosages à double tête de dosage, les dosages minutés et les dosages minutés à double tête de dosage.

Prérequis

Les sorties tout-ou-rien doivent être câblées de manière appropriée en fonction du type et des options de votre dosage.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.
Procédure

- 1. Configurer la ou les sorties tout-ou-rien :
 - a. Définir STOR2 précision sur Pompe.
 - b. Définissez Polarité STOR2 précision en fonction de votre installation.

Vérifiez que le signal de marche (ON) ouvre la vanne et que le signal d'arrêt (OFF) ferme la vanne.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

2. Définissez le Délai pompe à vanne sur le nombre de secondes d'exécution de la pompe avant l'ouverture de la vanne.

La valeur par défaut est de 10 secondes. La plage est comprise entre 0 seconde et 30 secondes.

Lorsque la commande Commencer le dosage est reçue, le transmetteur démarre la pompe, attend le nombre de secondes spécifié dans Délai pompe à vanne, puis ouvre la vanne. La pompe fonctionne jusqu'à ce que le dosage soit terminé.

Exemple : Configuration de la fonctionnalité de pompe

Important

Cet exemple utilise des paramètres standard ou typiques pour les paramètres requis. Votre application pourra avoir besoin de paramètres différents. Consulter les paramètres de bus PROFIBUS pour plus d'informations sur les types de données et les codes des entiers.

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Dosage	35	109	Définit STOR2 précision sur Pompe
Dosage	36	1	Définit Polarité STOR2 précision sur Niveau haut actif
Dosage	20	15.00	Définit Temporisation pompe-vanne sur 15 secondes

10.3 Configurer le contrôle de dosage avec les paramètres de bus PROFIBUS (en option)

Dans un environnement de production classique, le contrôle de dosage (démarrage et arrêt du dosage) est effectué par l'hôte ou l'API. Si vous le souhaitez, vous pouvez régler le système pour démarrer, arrêter, interrompre et reprendre le dosage depuis l'entrée TOR (si disponible). Vous pouvez également définir un évènement pour démarrer, arrêter, interrompre et reprendre le dosage.

10.3.1 Configurer l'entrée TOR pour la commande de dosage avec les paramètres de bus PROFIBUS

Si le canal B est disponible, vous pouvez le configurer comme une entrée TOR et l'utiliser pour démarrer et arrêter le dosage, ou pour interrompre et reprendre un dosage en cours. Vous pouvez également le configurer pour remettre à zéro le total partiel massique, le total volumique partiel ou tous les totaux. Lorsque l'entrée TOR est activée, toutes les actions affectées seront performées.

Prérequis

Le canal B doit être câblé pour fonctionner en tant qu'entrée tout-ou-rien.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Configurez le canal B pour fonctionner en tant qu'entrée tout-ou-rien.
 - a. Définir Type d'entrée/sortie du canal B sur Entrée TOR.
- 2. Affectez des actions de contrôle à l'entrée TOR.
 - a. Sélectionnez l'action (les actions) à effectuer lorsque l'entrée TOR est activée.

Action	Description	Commentaires
Démarrer le dosage	Démarre un dosage avec la configuration de dosage actuelle. Le total dosé est automati- quement remis à zéro au début du dosage.	Si un dosage est en cours, la commande est ig- norée. Si une purge automatique est en cours, les fonctions de démarrage de dosage sont exé- cutées lorsque la purge est complète.
Arrêter le dosage	Arrêt le dosage actuel et exécute les fonctions d'arrêt de dosage. Le dosage ne peut pas être redémarré.	Exécuté quand un dosage est en cours ou in- terrompu, et pendant une purge ou une tem- porisation de purge. Pour les dosages à tête de dosage double et les dosages temporisés à tête de dosage dou- ble, la commande arrête toujours le dosage actif en cours.
Interrompre le dosage	Dosages temporisés, dosages à tête de dosage double, et dosages temporisés à tête de dos- age double : voir Arrêter le dosage.	

Action	Description	Commentaires
	Dosages TOR 1 palier et 2 paliers : interrompt temporairement le dosage. Le dosage peut être redémarré si le total dosé n'a pas atteint la Quantité à délivrer.	Si une purge ou une temporisation de purge sont en cours, la commande est ignorée.
Redémarrer le dosage	Redémarre un dosage qui a été interrompu. Le comptage reprend au total dosé ou au mo- ment où il se trouvait lorsque le dosage a été interrompu.	Exécuté uniquement lorsqu'un dosage TOR 1 palier ou 2 paliers a été interrompu. Ignoré dans tous les autres cas.
RAZ du total partiel en masse	Remise à zéro de la valeur du totalisateur parti- el en masse.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.
RAZ du total partiel en volume	Remise à zéro de la valeur du totalisateur parti- el en volume.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.
RAZ de tous les totaux	RAZ de la valeur des totalisateurs partiels en masse et en volume, et du total dosé.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.

3. Définissez Polarité ETOR1 en fonction de votre installation.

Vérifiez que le signal de Marche (ON) envoyé par l'entrée tout-ou-rien est bien interprété (Marche), et vice versa.

Option	Tension appliquée entre les bornes	Lecture du transmetteur
Niveau haut actif	3 à 30 Vcc	Marche
	<0,8 Vcc	Arrêt
Niveau bas actif	<0,8 Vcc	Marche
	3 à 30 Vcc	Arrêt

Exemple : Configuration de l'entrée TOR pour le contrôle du dosage

Important

Cet exemple utilise des paramètres standard ou typiques pour les paramètres requis. Votre application pourra avoir besoin de paramètres différents. Consulter les paramètres de bus PROFIBUS pour plus d'informations sur les types de données et les codes des entiers.

Bloc	Index	Valeur (décimale)	Description
Dosage	83	5	Définit Type d'entrée/sortie du canal B sur Entrée TOR
Dosage	75	98	Affecte Démarrer le dosage à Entrée TOR
Dosage	82	1	Définit Polarité ETOR1 sur Niveau haut actif

10.3.2 Configurer un événement pour contrôler un dosage avec des paramètres de bus PROFIBUS

Vous pouvez affecter un évènement pour démarrer, arrêter, interrompre ou reprendre un dosage. Vous pouvez également affecter l'évènement pour remettre à zéro le total partiel massique, le total volumique partiel ou tous les totaux. Lorsque l'évènement s'active (ON), toutes les actions affectées s'exécutent.

Prérequis

Tous les évènements que vous souhaitez utiliser doivent être configurés. Vous pouvez les configurer avant ou après leur avoir attribué des actions.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Affectez des actions de contrôle du dosage à l'évènement.
 - a. Identifez l'action (les actions) à exécuter lorsque l'Evènement TOR 1 survient.

Action	Description	Commentaires
Démarrer le dosage	Démarre un dosage avec la configuration de dosage actuelle. Le total dosé est automati- quement remis à zéro au début du dosage.	Si un dosage est en cours, la commande est ig- norée. Si une purge automatique est en cours, les fonctions de démarrage de dosage sont exé- cutées lorsque la purge est complète.
Arrêter le dosage	Arrêt le dosage actuel et exécute les fonctions d'arrêt de dosage. Le dosage ne peut pas être redémarré.	Exécuté quand un dosage est en cours ou in- terrompu, et pendant une purge ou une tem- porisation de purge. Pour les dosages à tête de dosage double et les dosages temporisés à tête de dosage dou- ble, la commande arrête toujours le dosage actif en cours.
Interrompre le dosage	Dosages temporisés, dosages à tête de dosage double, et dosages temporisés à tête de dos- age double : voir Arrêter le dosage.	
	Dosages TOR 1 palier et 2 paliers : interrompt temporairement le dosage. Le dosage peut être redémarré si le total dosé n'a pas atteint la Quantité à délivrer.	Si une purge ou une temporisation de purge sont en cours, la commande est ignorée.
Redémarrer le dosage	Redémarre un dosage qui a été interrompu. Le comptage reprend au total dosé ou au mo- ment où il se trouvait lorsque le dosage a été interrompu.	Exécuté uniquement lorsqu'un dosage TOR 1 palier ou 2 paliers a été interrompu. Ignoré dans tous les autres cas.
RAZ du total partiel en masse	Remise à zéro de la valeur du totalisateur parti- el en masse.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.

Action	Description	Commentaires
RAZ du total partiel en volume	Remise à zéro de la valeur du totalisateur parti- el en volume.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.
RAZ de tous les totaux	RAZ de la valeur des totalisateurs partiels en masse et en volume, et du total dosé.	Exécuté uniquement lorsque aucun dosage n'est en cours (entre les dosages ou lorsqu'un dosage a été interrompu). Ignoré dans tous les autres cas.

2. Recommencez pour les Évènements TOR 2 à 5..

Exemple : Procédé de surveillance des évènements et interruption ou arrêt du dosage

La plage acceptable de masse volumique pour votre procédé est de 1,1 g/cm³ à 1,12 g/cm³. La plage de température acceptable est de 20 °C à 25 °C. Vous souhaitez interrompre le dosage si la masse volumique sort de cette plage. Vous souhaitez arrêter le dosage si la température sort de cette plage.

Configuration de l'événement :

Événement TOR 1 :

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Diagnostic	4	0	Sélectionne Événement TOR 1
Diagnostic	5	3	Définit Type d'événement sur Hors plage
Diagnostic	8	3	Définit Grandeur mesurée sur Densité
Diagnostic	6	1.10	Définit Valeur seuil bas (A) sur 1,1 g/cm ³
Diagnostic	7	1.12	Définit Valeur seuil haut (B) sur 1,12 g/cm ³

• Événement TOR 2 :

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Diagnostic	4	1	Sélectionne Événement TOR 2
Diagnostic	5	3	Définit Type d'événement sur Hors plage
Diagnostic	8	1	Définit Grandeur mesurée sur Température
Diagnostic	6	20.00	Définit Valeur seuil bas (A) sur 20 °C
Diagnostic	7	25.00	Définit Valeur seuil haut (B) sur 25 °C

• Affectations d'action :

Bloc	Index	Valeur (hexadéci- male)	Valeur (déci- male)	Description
Dosage	77	0x0039	57	Affecte Interruption du dosage sur Événement TOR 1
Dosage	76	0x003A	58	Affecte Arrêt du dosage sur Événement TOR 2

Postrequis

Si vous avez affecté des actions à des évènements qui ne sont pas configurés, vous devez configurer ces évènements avant de mettre en œuvre ce mode de contrôle des dosages.

10.3.3 Actions multiples affectées à un évènement ou une entrée tout ou rien

Si plusieurs actions sont affectées à un évènement ou une entrée tout ou rien, le transmetteur n'effectue que les actions appropriées dans la situation actuelle. Si deux ou plusieurs actions sont incompatibles, le transmetteur effectue les actions selon le modèle de priorité défini dans son micrologiciel.

Les exemples suivants montrent trois configurations recommandées par Micro Motion, et deux configurations qui ne sont pas recommandées.

Exemple : Utilisation d'un évènement ou d'une entrée tout ou rien pour démarrer et achever le dosage (recommandé)

Affectations d'action :

- Démarrage du dosage
- Arrêt du dosage
- RAZ du total partiel en masse
- RAZ du total partiel en volume

Résultat de l'activation :

- Si aucun dosage n'est en cours, les compteurs de masse et de volume sont remis à zéro et un dosage démarre.
- Si un dosage est en cours, il est arrêté et les compteurs de masse et de volume sont remis à zéro.

Exemple : Utilisation d'un évènement ou d'une entrée tout ou rien pour démarrer, mettre en pause et reprendre le dosage (recommandé)

Affectations d'action :

- Démarrage du dosage
- Interruption du dosage
- Redémarrage du dosage

Résultat de l'activation :

• Si aucun dosage n'est en cours, un dosage démarre.

- Si un dosage et en cours et n'est pas en pause, il est mis en pause.
- Si un dosage est en pause, il redémarre.

Exemple : Utilisation d'une entrée tout ou rien pour démarrer le dosage et remettre le débit volumique à zéro (recommandé)

Affectations d'action :

- Démarrage du dosage
- RAZ du total partiel en volume

Résultat de l'activation :

- Si aucun dosage n'est en cours, le compteur de volume est remis à zéro et un dosage démarre.
- Si un dosage est en cours, le compteur de volume est remis à zéro.

Conseil

Cette configuration est utile si vous avez configuré votre dosage en termes de masse, mais voulez également connaître le total en volume du dosage. Dans ce cas, n'activez pas l'entrée tout ou rien tant que le dosage est en cours. À la fin du dosage, relevez le total en volume. Puis passez au dosage suivant.

Exemple : Affectations incompatibles (non recommandées)

Affectations d'action :

- Démarrage du dosage
- Arrêt du dosage
- Interruption du dosage
- Redémarrage du dosage

Résultat de l'activation :

- Si aucun dosage n'est en cours, un dosage démarre.
- Si un dosage est en cours, il est arrêté.

Dans cet exemple, l'évènement ou l'entrée tout ou rien ne mettra jamais le dosage en pause parce que l'action Arrêter le dosage est prioritaire.

Exemple : Affectations incompatibles (non recommandées)

Affectations d'action :

- Arrêt du dosage
- RAZ de tous les totaux

Résultat de l'activation :

- Si aucun dosage n'est en cours, tous les totaux, y compris le total dosé, sont remis à zéro.
- Si un dosage est en cours, il est arrêté et tous les totaux, y compris le total dosé, sont remis à zéro.

Avec cette combinaison, le total dosé est remis à zéro avant que les données puissent être relevées.

10.4 Configurer le rapport de dosage avec les paramètres de bus PROFIBUS (en option)

Vous pouvez configurer le transmetteur pour qu'il signaler l'état activé/désactivé (ON/OFF) du dosage sur le Canal B (si disponible), ainsi que le pourcentage de quantité délivrée sur la sortie analogique.

10.4.1 Configurer Canal B pour fonctionner en tant que sortie TOR et signaler l'état activé/désactivé (ON/OFF) de dosage avec des paramètres de bus PROFIBUS

Si le Canal B est disponible, vous pouvez l'utiliser pour signaler l'exécution en cours ou non d'un dosage.

Prérequis

Le canal B doit être câblé pour fonctionner en tant que sortie tout-ou-rien.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Définir Type d'entrée/sortie du canal B sur Sortie TOR.
- 2. Définir Affectation STOR1 sur Prédéterminateur : Livraison/dosage en cours
- 3. Définissez Polarité STOR1 en fonction de votre installation.

Option	Signal du transmetteur	Tension
Niveau haut actif	Marche	Spécifique au site jusqu'à 30 Vcc
	Arrêt	0 Vcc
Niveau bas actif	Marche	0 Vcc
	Arrêt	Spécifique au site jusqu'à 30 Vcc

4. Définissez Action sur défaut STOR1 en fonction de votre installation.

Option	Description
Valeur haute	La sortie tout-ou-rien est définie sur Marche (ON) (ouverture de la vanne) en cas de défaut.
Valeur basse	La sortie tout-ou-rien est définie sur Arrêt (OFF) (fermeture de la vanne) en cas de défaut.
Aucune	Aucune action n'est entreprise en cas de défaut. La sortie tout-ou-rien reste dans l'état dans lequel elle était avant le défaut.

Conseil

Lorsque la sortie tout-ou-rien est utilisée pour signaler le dosage, Micro Motion recommande de régler Action sur défaut STOR1 sur Aucune.

Exemple : Configuration de la sortie TOR pour signaler l'état activé/désactivé (ON/ OFF) de dosage

Bloc	Index	Valeur (décimale)	Description
Dosage	83	4	Définit Type d'entrée/sortie du canal B sur Sortie TOR
Dosage	70	106	Définit Affectation STOR1 sur Prédéterminateur : Livraison/dosage en cours
Dosage	71	1	Définit Polarité STOR1 sur Niveau haut actif
Dosage	72	4	Définit Action sur défaut STOR1 sur Aucun

10.4.2 Configurer la sortie analogique pour signaler le pourcentage de dosage livré avec les paramètres de bus PROFIBUS

Vous pouvez configurer la sortie analogique pour qu'elle signale le pourcentage de Cible du dosage délivré. Dans une configuration type, le courant augmente de 4 mA à 20 mA à mesure que le total du dosage augmente entre 0 et 100 %.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Définir Variable secondaire est sur Prédéterminateur : Pourcentage dosage.
- 2. Définir Valeur basse d'échelle (LRV) sur le pourcentage de dosage représenté par 4 mA.
- Définir Valeur haute d'échelle (URV) sur le pourcentage de dosage représenté par 20 mA.
- 4. Régler le paramètre Action sur défaut SA sur l'option souhaitée.

Si Valeur basse d'échelle (LRV) est définit sur 0 % et Valeur haute d'échelle (URV) sur 100% : lorsque le dosage démarre, la sortie analogique génère un courant de 4 mA (0 % de la Cible du dosage). Le courant augmente proportionnellement au total de dosage, jusqu'à un courant de 20 mA (100 % de la Cible du dosage).

Remarque

Si Sens d'écoulement est défini sur Bidirectionnel ou Bidirectionnel inverse, le total du dosage peut diminuer dans certaines conditions d'écoulement. Dans ce cas, le courant généré par la sortie analogique diminue proportionnellement.

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Dosage	42	207	Définit Variable secondaire est sur Prédéterminateur : Pourcentage dosage
Dosage	43	10.00	Définit Valeur basse d'échelle sur 10 %
Dosage	44	80.00	Définit Valeur haute d'échelle sur 80 %
Dosage	47	4	Définit Action sur défaut SA sur Aucun

Exemple : Configuration de la sortie analogique pour signaler le pourcentage de dosage livré

11 Fonctionnement du dosage avec les paramètres de bus PROFIBUS

Sujets couverts dans ce chapitre:

- Effectuer un dosage contrôlé par vanne intégrée avec les paramètres de bus PROFIBUS
- Effectuer une purge manuelle à l'aide des paramètres de bus PROFIBUS
- Nettoyer En Place (NEP) avec les paramètres de bus PROFIBUS
- Surveiller et analyser la performance de dosage avec les paramètres de bus PROFIBUS

11.1 Effectuer un dosage contrôlé par vanne intégrée avec les paramètres de bus PROFIBUS

Vous pouvez utiliser les communications numériques PROFIBUS pour démarrer un dosage, contrôler un dosage, interrompre et reprendre le dosage, et pour terminer un dosage.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- (En option) Si vous le souhaitez, entrez une autre valeur pour Cible du dosage (dosages tout-ou-rien à un palier, dosages tout-ou-rien à 2 paliers ou dosages à deux têtes de dosage), ou pour Durée cible (dosages temporisés ou dosages temporisés à deux têtes de dosage).
- 2. (En option) Si l'AOC est activée, vous pouvez entrer une autre valeur pour Coeff AOC.

Conseil

En production, Micro Motion recommande de conserver la valeur de Coeff AOC déterminée lors de l'étalonnage AOC. Si vous effectuez des dosages d'étalonnage AOC et qu'une valeur de Coeff AOC d'un appareil similaire est disponible, vous pouvez utiliser cette valeur comme première approximation sur l'appareil en cours. Ceci peut être utile si vous souhaitez empêcher un déversement.

3. Ecrire 1 dans le bloc de dosage, index 106.

Le total du dosage est automatiquement remis à zéro et la ou les vannes sont ouvertes. L'indicateur Dosage en cours doit être Activé. S'il ne l'est pas et si l'indicateur Démarrage non OK ou l'indicateur Débit AOC trop élevé est Activé, résolvez la configuration du dosage et réessayez.

4. Contrôlez le dosage à l'aide des valeurs Total dosé et Pourcentage dosage et des indicateurs Etat du dosage.

Valeurs du dosage en cours	Description
Total dosé	 Quantité de dosage au moment actuel. Cette valeur est affectée par Incrémentation : Si Incrémentation est activé, le Total dosé commence à 0 et augmente jusqu'à la Cible du dosage. Si Incrémentation est désactivé, le Total dosé commence à la Cible du dosage et diminue jusqu'à 0.
Pourcentage dosage	Pourcentage de Cible du dosage mesuré jusqu'à l'heure ac- tuelle. Cette valeur n'est pas affectée par Incrémentation.

Indicateur Etat du dosage	Description
Dosage en cours	Un dosage est actuellement en cours d'exécution via la vanne principale. Cet indicateur est actif même lorsque le dosage est interrompu.
Dosage secondaire en cours	Un dosage est actuellement en cours d'exécution via la vanne secondaire. Cet indicateur est actif même lorsque le dosage est interrompu. Il s'applique aux dosages à deux têtes de dosage uniquement.
Durée maxi du dosage dépassée	La durée du dosage actuel a dépassé le temps spécifié pour le paramètre Durée maxi du dosage. Le dosage a été arrêté.
Vanne principale	La vanne principale est ouverte.
Vanne secondaire	La vanne secondaire est ouverte.
Pompe	La pompe est en cours d'exécution.
Purge en cours	Un cycle de purge a été démarré automatiquement ou man- uellement.
Phase tempo de purge	Un cycle de purge automatique est en cours d'exécution et se trouve actuellement dans la phase de temporisation en- tre la fin du dosage et le début de la purge.
Vanne de purge	La vanne de purge est ouverte.

5. (En option) Interrompez le dosage si vous le souhaitez.

Lorsque le dosage est interrompu, vous pouvez modifier la valeur de Cible actuelle, terminer le dosage manuellement avec Terminer le dosage ou redémarrer le dosage avec Reprendre le dosage. Le dosage reprend à la valeur actuelle de Total dosé et de Pourcentage dosage.

Restriction

Vous ne pouvez pas interrompre un dosage temporisé ou un dosage temporisé à deux têtes de dosage.

Important

Pour les dosages tout-ou-rien à 2 paliers, les effets de l'interruption et de la reprise du dosage dépendent de la temporisation des commandes d'ouverture et de fermeture de la vanne et du point auquel le dosage est interrompu.

6. (En option) Utilisez Terminer le dosage pour terminer manuellement le dosage si vous le souhaitez.

Une fois le dosage terminé, il ne peut pas être redémarré.

Conseil

Dans la plupart des cas, vous devez laisser le dosage se terminer automatiquement. Ne terminez le dosage manuellement que lorsque vous envisagez de l'ignorer.

11.1.1 En cas d'échec du démarrage du dosage

Si le démarrage du dosage échoue, vérifiez les indicateurs Démarrage impossible et Débit trop élevé pour corr. autom. erreur jetée

Si l'indicateur Démarrage impossible est Allumé, vérifiez les points suivants :

- Assurez-vous que le dosage est activé.
- Assurez-vous que le dosage précédent est terminé.
- Assurez-vous que Quantité à délivrer ou Heure cible sont réglées sur un nombre positif.
- Assurez-vous que toutes les sorties ont été affectées à la vanne ou la pompe appropriée au type ou à l'option de dosage.
- Assurez-vous que le transmetteur ne présente aucun problème.
- Pour les dosages par tête de dosage double ou les dosages temporisés par tête de dosage double, assurez-vous qu'aucun dosage n'est en cours sur une tête de dosage.

Si l'indicateur Débit trop élevé pour corr. autom. erreur jetée est allumé, le dernier débit mesuré est trop élevé pour permettre le démarrage du dosage. Autrement dit, le coefficient de correction automatique d'erreur de jetée, compensé pour le débit, stipule que la commande de fermeture de vanne devrait être émise avant le démarrage du dosage. Cela peut se produire si le débit a augmenté de façon importante depuis que le coefficient AOC a été calculé. Micro Motion recommande la procédure de récupération suivante :

- 1. Effectuez tout paramétrage requis pour l'exécution de l'étalonnage AOC.
- 2. Écrire 1 dans le bloc de dosage, Index 96 (Forcer le démarrage).
- 3. Exécuter l'ajustage de la correction automatique d'erreur de jetée.
- 4. Reprendre le dosage de production sur votre système avec le nouveau coefficient AOC.

Bloc	Index	Description
Dosage	6	Vérifier que Quantité à délivrer est un nombre non négatif
Dosage	16	Vérifiez que Heure cible est un nombre non négatif
Dosage	41	Vérifiez les indicateurs Démarrage impossible et Débit trop élevé pour corr. autom. erreur jetée

Exemple : Valeurs à vérifier en cas d'échec du démarrage du dosage

11.1.2 Si le dosage n'a pas pu se terminer

Si votre dosage s'est terminé anormalement, vérifiez le transmetteur et l'indicateur Durée maxi du dosage dépassée.

En cas de problème pendant le dosage, le transmetteur interrompt automatiquement le dosage.

Si l'indicateur Durée maxi du dosage dépassée est Allumé, cela signifie que le dosage n'a pas atteint son objectif dans la Durée maxi du dosage. Envisagez les possibilités ou actions suivantes :

- Augmentez le débit de votre procédé.
- Vérifiez les liquides avec entraînement d'air (écoulement biphasique) dans votre fluide procédé.
- Contrôlez la présence éventuelle de blocages dans l'écoulement.
- Assurez-vous que les vannes peuvent se fermer à la vitesse voulue.
- Réglez la Durée maxi du dosage sur une valeur plus élevée.
- Désactivez la Durée maxi du dosage en le réglant sur 0.

11.1.3 Effets de Pause et Reprise sur les dosages TOR à deux paliers

Pour les dosages TOR à deux paliers, les effets de la mise en pause et de la reprise dépendent du lieu où les actions Pause et Reprise interviennent par rapport à l'ouverture et la fermeture des vannes principale et secondaire.

Ouvrir grand débit d'abord, Fermer grand débit d'abord

Dans les illustrations suivantes :

- La vanne principale s'ouvre au début du dosage.
- La vanne secondaire s'ouvre au point configuré par l'utilisateur durant le dosage. *T* représente la durée ou quantité configurée pour Ouvrir petit débit.
- La vanne principale se ferme avant la fin du dosage.
- La vanne secondaire se ferme à la fin du dosage.

Transmetteurs massiques de conditionnement Micro Motion[®] avec PROFIBUS-DP

Figure 11-3: Cas C

Ouvrir grand débit d'abord, Fermer petit débit d'abord

Dans les illustrations suivantes :

- La vanne principale s'ouvre au début du dosage.
- La vanne secondaire s'ouvre au point configuré par l'utilisateur durant le dosage. *T* représente la durée ou quantité configurée pour Ouvrir petit débit.

- La vanne secondaire se ferme avant la fin du dosage.
- La vanne principale se ferme à la fin du dosage.

Figure 11-8: Cas H

Ouvrir petit débit d'abord, Fermer grand débit d'abord

Dans les illustrations suivantes :

- La vanne secondaire s'ouvre au début du dosage.
- La vanne principale s'ouvre au point configuré par l'utilisateur durant le dosage. *T* représente la durée ou quantité configurée pour Ouvrir grand débit.
- La vanne principale se ferme avant la fin du dosage.
- La vanne secondaire se ferme à la fin du dosage.

Figure 11-9: Cas I

Ouvrir petit débit d'abord, Fermer petit débit d'abord

Dans les illustrations suivantes :

- La vanne secondaire s'ouvre au début du dosage.
- La vanne principale s'ouvre au point configuré par l'utilisateur durant le dosage. *T* représente la durée ou quantité configurée pour Ouvrir grand débit.
- La vanne secondaire se ferme avant la fin du dosage.

- Figure 11-13: Cas M Interrompre Reprendre Vanne secondaire Vanne principale Quantité à Ouverture Début Ouverture Fermeture principale délivrer principale secondaire (AOC ajustée) non effectuée
- La vanne principale se ferme à la fin du dosage.

Figure 11-14: Cas N

11.2 Effectuer une purge manuelle à l'aide des paramètres de bus PROFIBUS

La fonction Purge est utilisée pour contrôler une vanne auxiliaire pouvant servir à des tâches autres que le dosage. Par exemple, elle peut servir à l'ajout d'eau ou de gaz dans le conteneur après le dosage, ou au "remplissage." Le débit dans la vanne auxiliaire n'est pas mesuré par le transmetteur.

Prérequis

La fonctionnalité de purge doit être implémentée dans votre système.

Le dosage précédent doit être terminé.

La vanne auxiliaire doit être reliée au fluide que vous souhaitez utiliser (air, eau, azote par exemple).

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

1. Ecrire 1 dans le bloc de dosage, index 97 (Commencer la purge).

Dans le bloc de dosage, index 40, les indicateurs Purge en cours et Vanne de purge sont activés.

- 2. Laissez le fluide de purge s'écouler dans votre système pendant la durée appropriée.
- 3. Ecrire 0 dans le bloc de dosage, index 98 (Terminer la purge).

Dans le bloc de dosage, index 40, les indicateurs Purge en cours et Vanne de purge sont désactivés.

11.3 Nettoyer En Place (NEP) avec les paramètres de bus PROFIBUS

La fonction CIP (Clean In Place) permet de forcer l'introduction d'un fluide de nettoyage dans le système. CIP vous permet également de nettoyer les surfaces intérieures des conduites, vannes, buses, etc., sans désassembler l'équipement.

Prérequis

Aucun dosage ne doit être en cours d'exécution.

Le fluide de nettoyage doit pouvoir s'écouler dans l'ensemble du système.

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Remplacez le fluide procédé par le fluide de nettoyage.
- 2. Ecrire 1 dans le bloc de dosage, index 111 (Commencer le nettoyage).

Le transmetteur ouvre la vanne principale, puis la vanne secondaire si elle est utilisée pour le dosage. Si la fonctionnalité de pompe est activée, la pompe démarre avant l'ouverture de la vanne. Dans le bloc de dosage, index 40, l'indicateur Nettoyage en cours s'active.

- 3. Laissez le fluide de nettoyage s'écouler dans votre système pendant la durée appropriée.
- 4. Ecrire 1 dans le bloc de dosage, index 112 (Arrêter le nettoyage).

Le transmetteur ferme toutes les vannes ouvertes et arrête la pompe, le cas échéant. Dans le bloc de dosage, index 40, l'indicateur Nettoyage en cours se désactive.

5. Remplacez le fluide de nettoyage par le fluide procédé.

11.4 Surveiller et analyser la performance de dosage avec les paramètres de bus PROFIBUS

Vous pouvez collecter des données de flux détaillées pour un dosage unique, et comparer les données entre plusieurs dosages.

11.4.1 Collecter des informations complémentaires détaillées pour un dosage unique avec des paramètres de bus PROFIBUS

Lorsque la journalisation du dosage est activée, des données détaillées du dosage le plus récent sont stockées sur le transmetteur. Vous pouvez les récupérer pour les analyser au moyen de communications numériques. Les données détaillées peuvent servir à régler ou dépanner votre environnement de production.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Ecrire 1 dans le bloc de dosage, index 37 (Activer enregistrement dosage).
- 2. Exécuter un dosage.
- 3. Ecrire 0 dans le bloc de dosage, index 37 (Activer enregistrement dosage) une fois la collecte des informations terminée.
- 4. Lire l'enregistrement de dosage.
 - a. Ecrire un index d'enregistrement de dosage dans le bloc de dosage, index 38.

Les valeurs d'index d'enregistrement de dosage s'étendent de 0 à 1 000, c'est-àdire les 1 000 derniers enregistrements.

 b. Lire les informations d'enregistrement de cet index dans le bloc de dosage, index 39.

L'enregistrement du dosage contient les données d'un seul dosage, du début du dosage jusqu'à 50 millisecondes après l'arrêt de l'écoulement ou jusqu'à ce que la taille d'enregistrement maximale soit atteinte. Les données sont écrites toutes les 10 millisecondes. Chaque donnée contient la valeur actuelle de Source du débit (variable de procédé utilisée pour mesurer le dosage). L'enregistrement du dosage est limité à 1000 enregistrements ou 10 secondes de dosage. Lorsque la taille maximale est atteinte, l'enregistrement s'arrête mais les données sont disponibles sur le transmetteur jusqu'au démarrage du dosage suivant. L'enregistrement du dosage est supprimé à chaque démarrage d'un dosage.

11.4.2 Analyser la performance de dosage avec les statistiques de dosage et les paramètres de bus PROFIBUS

Le transmetteur enregistre automatiquement une variété de données concernant chaque dosage. Ces données sont disponibles pour vous assister lors du réglage de votre système.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. (En option) Ecrire 1 dans le bloc de dosage, index 95 (RAZ statistiques dosage) pour démarrer votre analyse avec un nouvel ensemble d'informations de dosage.
- 2. Exécuter des dosages et observer les informations de dosage.

Informations de dosage	Index du bloc de dosage	Type de dosage	Description
Moyenne des dos- ages totaux	91	Dosages tout-ou-rien 1 palier, dosages tout-ou- rien 2 paliers et dosages temporisés	Moyenne du total dosé de tous les dosages effectués depuis la dernière remise à zéro des sta- tistiques.

Informations de dosage	Index du bloc de dosage	Type de dosage	Description
		Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage	Moyenne du total dosé via la tête de dosage n°1 de tous les dosages effectués depuis la dernière remise à zéro des sta- tistiques.
Variance des dos- ages totaux	92	Dosages tout-ou-rien 1 palier, dosages tout-ou- rien 2 paliers et dosages temporisés	Variance du total dosé de tous les dosages effectués depuis la dernière remise à zéro des sta- tistiques.
		Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage	Variance du total dosé via la tête de dosage n°1 de tous les dosages effectués depuis la dernière remise à zéro des sta- tistiques.
Moyenne des dos- ages secondaires	93	Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage uniquement	Moyenne du total dosé via la tête de dosage n°2 de tous les dosages effectués depuis la dernière remise à zéro des sta- tistiques.
Variance des dos- ages secondaires	94	Dosages à deux têtes de dosage et dosages tem- porisés à deux têtes de dosage uniquement	Variance du total dosé via la tête de dosage n°2 de tous les dosages effectués depuis la dernière remise à zéro des sta- tistiques.

Partie III Configurer et exécuter des dosages contrôlés par vanne externe

Chapitres inclus dans cette partie:

- Configurer et paramétrer des dosages contrôlés par vanne externe avec ProLink II
- Configurer et paramétrer des dosages contrôlés par vanne externe avec PROFIBUS EDD
- Configurer et paramétrer des dosages contrôlés par vanne externe avec les paramètres de bus PROFIBUS

12 Configurer et paramétrer des dosages contrôlés par vanne externe avec ProLink II

Sujets couverts dans ce chapitre:

- Configurer un dosage contrôlé par vanne externe avec ProLink II
- Configurer et exécuter un dosage à contrôle de vanne externe

12.1 Configurer un dosage contrôlé par vanne externe avec ProLink II

La configuration d'un dosage contrôlé par vanne externe comprend la configuration de la sortie impulsions et de plusieurs paramètres d'écoulement. Lorsque le dosage est configuré, l'hôte utilise les données d'écoulement provenant de la sortie impulsions du transmetteur pour mesurer le dosage et fermer les vannes.

Prérequis

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Choisir ProLink > Configuration > Fréquence.
- 2. Réglez Variable tertiaire sur la grandeur mesurée que l'hôte utilisera pour mesurer le dosage : Débit massique ou Débit volumique.
- 3. Réglez les paramètres suivants conformément à votre application : Mode de réglage de la sortie impulsions et les paramètres liés, Polarité de sortie impulsions, et Action sur défaut.
- 4. Ouvrir le panneau Débit.
- 5. Si vous réglez Variable tertiaire sur Débit massique :
 - a. Réglez Unités de débit massique sur les unités de débit massique utilisées par l'hôte.
 - b. Réglez le Seuil de coupure de débit massique au débit massique le plus bas qui puisse être mesuré et rapporté à l'hôte. Tout débit inférieur à ce seuil sera indiqué comme étant nul (0).
- 6. Si vous réglez Variable tertiaire sur Débit volumique :
 - a. Réglez Unités de débit volumique sur les unités de débit volumique utilisées par l'hôte.
 - b. Réglez le Seuil de coupure de débit volumique au débit volumique le plus bas qui puisse être mesuré et rapporté à l'hôte. Tout débit inférieur à ce seuil sera indiqué comme étant nul (0).
- 7. Réglez Amortissement du débit de la façon souhaitée.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

8. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui cor- respond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flèche sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

Postrequis

Assurez-vous que votre hôte est configuré correctement. Par exemple, assurez-vous que votre hôte utilise l'unité de mesure appropriée et qu'il peut convertir le débit en débit total si nécessaire.

12.2

Configurer et exécuter un dosage à contrôle de vanne externe

L'hôte doit recevoir des informations de débit du transmetteur, procéder aux calculs nécessaires, et ouvrir et fermer des vannes pour gérer le dosage.

- 1. Vérifiez que l'hôte reçoit des informations de débit sur la sortie impulsions du transmetteur.
- 2. Vérifiez que l'hôte interprète et traite correctement les informations provenant du transmetteur.
- 3. Procédez au câblage et à la configuration nécessaires de sorte que l'hôte puisse ouvrir et fermer des vannes aux moments appropriés.
- 4. Lancez le programme qui démarre et gère le dosage.

13 Configurer et paramétrer des dosages contrôlés par vanne externe avec PROFIBUS EDD

Sujets couverts dans ce chapitre:

- Configurer un dosage contrôlé par vanne externe avec PROFIBUS EDD
- Configurer et exécuter un dosage à contrôle de vanne externe

13.1 Configurer un dosage contrôlé par vanne externe avec PROFIBUS EDD

La configuration d'un dosage contrôlé par vanne externe comprend la configuration de la sortie impulsions et de plusieurs paramètres d'écoulement. Lorsque le dosage est configuré, l'hôte utilise les données d'écoulement provenant de la sortie impulsions du transmetteur pour mesurer le dosage et fermer les vannes.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Choisir En ligne > Configurer > Paramétrage manuel > Sorties impulsions.
- 2. Réglez Variable tertiaire sur la grandeur mesurée que l'hôte utilisera pour mesurer le dosage : Débit massique ou Débit volumique.
- 3. Réglez les paramètres suivants conformément à votre application : Mode de réglage de la sortie impulsions et les paramètres liés, Polarité de sortie impulsions, et Action sur défaut.
- 4. Choisissez En ligne > Configurer > Configuration manuelle > Mesures > Écoulement.
- 5. Si vous réglez Variable tertiaire sur Débit massique :
 - a. Réglez Unités de débit massique sur les unités de débit massique utilisées par l'hôte.
 - Réglez le Seuil de coupure de débit massique au débit massique le plus bas qui puisse être mesuré et rapporté à l'hôte. Tout débit inférieur à ce seuil sera indiqué comme étant nul (0).
- 6. Si vous réglez Variable tertiaire sur Débit volumique :
 - a. Réglez Unités de débit volumique sur les unités de débit volumique utilisées par l'hôte.
 - b. Réglez le Seuil de coupure de débit volumique au débit volumique le plus bas qui puisse être mesuré et rapporté à l'hôte. Tout débit inférieur à ce seuil sera indiqué comme étant nul (0).
- 7. Réglez Amortissement du débit de la façon souhaitée.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

8. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui cor- respond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flèche sur la sonde.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

Postrequis

Assurez-vous que votre hôte est configuré correctement. Par exemple, assurez-vous que votre hôte utilise l'unité de mesure appropriée et qu'il peut convertir le débit en débit total si nécessaire.

13.2

Configurer et exécuter un dosage à contrôle de vanne externe

L'hôte doit recevoir des informations de débit du transmetteur, procéder aux calculs nécessaires, et ouvrir et fermer des vannes pour gérer le dosage.

- 1. Vérifiez que l'hôte reçoit des informations de débit sur la sortie impulsions du transmetteur.
- 2. Vérifiez que l'hôte interprète et traite correctement les informations provenant du transmetteur.
- 3. Procédez au câblage et à la configuration nécessaires de sorte que l'hôte puisse ouvrir et fermer des vannes aux moments appropriés.
- 4. Lancez le programme qui démarre et gère le dosage.

14 Configurer et paramétrer des dosages contrôlés par vanne externe avec les paramètres de bus PROFIBUS

Sujets couverts dans ce chapitre:

- Configurer un dosage contrôlé par vanne externe avec les paramètres de bus PROFIBUS
- Configurer et exécuter un dosage à contrôle de vanne externe

14.1 Configurer un dosage contrôlé par vanne externe avec les paramètres de bus PROFIBUS

La configuration d'un dosage contrôlé par vanne externe comprend la configuration de la sortie impulsions et de plusieurs paramètres d'écoulement. Lorsque le dosage est configuré, l'hôte utilise les données d'écoulement provenant de la sortie impulsions du transmetteur pour mesurer le dosage et fermer les vannes.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Procédure

- 1. Réglez Variable tertiaire sur la grandeur mesurée que l'hôte utilisera pour mesurer le dosage : Débit massique ou Débit volumique.
- 2. Réglez les paramètres suivants conformément à votre application : Mode de réglage de la sortie impulsions et les paramètres liés, Polarité de sortie impulsions, et Action sur défaut.
- 3. Si vous réglez Variable tertiaire sur Débit massique :
 - a. Réglez Unités de débit massique sur les unités de débit massique utilisées par l'hôte.
 - Réglez le Seuil de coupure de débit massique au débit massique le plus bas qui puisse être mesuré et rapporté à l'hôte. Tout débit inférieur à ce seuil sera indiqué comme étant nul (0).
- 4. Si vous réglez Variable tertiaire sur Débit volumique :
 - a. Réglez Unités de débit volumique sur les unités de débit volumique utilisées par l'hôte.
 - b. Réglez le Seuil de coupure de débit volumique au débit volumique le plus bas qui puisse être mesuré et rapporté à l'hôte. Tout débit inférieur à ce seuil sera indiqué comme étant nul (0).
- 5. Réglez Amortissement du débit de la façon souhaitée.

Conseil

La valeur par défaut d'Amortissement du débit est de 0,04 seconde. Il s'agit de la valeur optimale pour la plupart des applications de dosage, et elle n'est généralement pas modifiée.

Option	Description
Normal	Le fluide procédé s'écoule dans une seule direction, qui cor- respond au sens de la flèche sur la sonde.
Bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit correspond au sens de la flèche sur la sonde.
Inversion numérique normal	Le fluide procédé s'écoule dans une seule direction, dans le sens opposé à la flèche sur la sonde.
Inversion numérique bidirectionnel	Le fluide procédé peut s'écouler dans les deux directions. La majeure partie du débit est dans le sens opposé à la flèche sur la sonde.

6. Définissez Sens d'écoulement sur l'option appropriée à votre installation.

Restriction

Toutes les autres options pour Sens d'écoulement ne sont pas valides et elles seront rejetées par le transmetteur.

Exemple : Configuration d'un dosage contrôlé par vanne externe

Important

Cet exemple utilise des paramètres standard ou typiques pour les paramètres requis. Votre application pourra avoir besoin de paramètres différents. Consulter les paramètres de bus PROFIBUS pour plus d'informations sur les types de données et les codes des entiers.

Bloc	Index	Valeur (décimale ou flot- tante)	Description
Dosage	57	0	Définit Variable tertiaire sur Débit massique maximum
Dosage	58	0	Définit Mode de réglage de la sortie impulsion sur Fré- quence=Débit
Dosage	59	333.33	Définit Facteur fréquence sur 333,33
Dosage	60	2000.00	Définit Valeur débit sur 2 000
Dosage	66	1	Définit Front d'impulsion sur Niveau haut actif
Dosage	64	1	Définit Action sur défaut de sortie impulsions sur Valeur basse
Mesure	5	1318	Définit Unités de débit massique sur g/s
Mesure	18	3.00	Définit Seuil de coupure du débit massique sur 3 g/s
Mesure	11	1347	Définit Unités de débit volumique sur m3/s
Mesure	19	0.03	Définit Seuil de coupure du débit volumique sur 0,03 m ³ /s
Mesure	21	0	Définit Sens d'écoulement sur Normal

Postrequis

Assurez-vous que votre hôte est configuré correctement. Par exemple, assurez-vous que votre hôte utilise l'unité de mesure appropriée et qu'il peut convertir le débit en débit total si nécessaire.

14.2

Configurer et exécuter un dosage à contrôle de vanne externe

L'hôte doit recevoir des informations de débit du transmetteur, procéder aux calculs nécessaires, et ouvrir et fermer des vannes pour gérer le dosage.

- 1. Vérifiez que l'hôte reçoit des informations de débit sur la sortie impulsions du transmetteur.
- 2. Vérifiez que l'hôte interprète et traite correctement les informations provenant du transmetteur.
- 3. Procédez au câblage et à la configuration nécessaires de sorte que l'hôte puisse ouvrir et fermer des vannes aux moments appropriés.
- 4. Lancez le programme qui démarre et gère le dosage.

Partie IV Configuration générale du transmetteur

Chapitres inclus dans cette partie:

- Configuration des mesures de procédé
- Configuration des options de l'appareil et des préférences
- Intégration du débitmètre au réseau

15 Configuration des mesures de procédé

Sujets couverts dans ce chapitre:

- Caractérisation du débitmètre (si nécessaire)
- Configurer les paramètres de mesure du débit massique
- Configurer la mesure de débit volumique pour les applications sur liquide
- Configurer le Sens d'écoulement
- Configurer la mesure de la masse volumique
- Configurer la mesure de la température
- Configurer la compensation de la pression

15.1 Caractérisation du débitmètre (si nécessaire)

ProLink II	ProLink > Configuration > Device > Sensor Type
	ProLink > Configuration > Flow > Flow Cal
	ProLink > Configuration > Density > D1
	ProLink > Configuration > Density > D2
	ProLink > Configuration > Density > Temp Coeff (DT)
	ProLink > Configuration > Density > K1
	ProLink > Configuration > Density > K2
	ProLink > Configuration > Density > FD
ProLink III	Device Tools > Calibration Data
PROFIBUS EDD	Configure > Manual Setup > Characterize > Type
	Configure > Manual Setup > Characterize > Flow FCF
	Configure > Manual Setup > Characterize > D1
	Configure > Manual Setup > Characterize > D2
	Configure > Manual Setup > Characterize > DT
	Configure > Manual Setup > Characterize > K1
	Configure > Manual Setup > Characterize > K2
	Configure > Manual Setup > Characterize > FD
PROFIBUS bus pa-	Sensor Type: Block: Device Information, Index 7
rameters	Flow Calibration Factor (FCF): Block: Calibration, Index 4
	Temperature coefficient for flow (FT) : Block: Calibration, Index 5
	D1: Block: Calibration, Index 21
	D2: Block: Calibration, Index 22
	Density temperature coefficient (DT): Block: Calibration, Index 26
	K1: Block: Calibration, Index 16
	K2: Block: Calibration, Index 17
	FD: Block: Calibration, Index 18

Vue d'ensemble

La caractérisation du débitmètre est l'opération qui consiste à configurer votre transmetteur pour prendre en compte les caractéristiques métrologiques spécifiques du capteur auquel il est associé. Les paramètres de caractérisation (ou d'étalonnage) décrivent la sensibilité du capteur au débit, à la masse volumique et à la température. Différents paramètres sont nécessaires suivant le type de votre capteur. Les valeurs de votre capteur sont indiquées par Micro Motion sur la plaque signalétique du capteur ou sur le certificat d'étalonnage.

Conseil

Si vous avez commandé votre débitmètre en tant qu'unité, il a été déjà été caractérisé à l'usine. Vous devez cependant vérifier ses paramètres de caractérisation.

Procédure

- 1. Spécifiez Type de capteur.
 - Capteur à tube courbe (tous les capteurs hormis la série T)
- 2. Réglez les paramètres de caractérisation débit. Veillez à inclure tous les points décimaux.
 - Pour les capteurs à tube courbe, réglez Coef étal débit (Coefficient d'étalonnage en débit).
- 3. Réglez les paramètres de caractérisation de masse volumique.
 - Pour les capteurs à tube courbé, réglez D1, D2, TC, K1, K2 et FD. (TC s'appelle parfois DT.)

15.1.1 Exemple de plaques signalétiques du capteur

Figure 15-1: Plaque signalétique sur les nouveaux capteurs à tube courbé (tous capteurs sauf Série T)

	MODEL
	S∕N
	FLOW CAL* 19.0005.13
	DENS CAL* 12502142824.44
	D1 0.0010 K1 12502.000
	D2 0.9980 K2 14282.000
	TC 4.44000 FD 310
	TEMP RANGE TO C
	TUBE** CONN*** CASE**
	* CALIBRATION FACTORS REFERENCE TO 0 C
ļ	** MAXIMUM PRESSURE RATING AT 25 C, ACCORDING TO ASME B31.3 *** MAXIMUM PRESSURE RATING AT 25C, ACCORDING TO ANSI/ASME B16.5 OR MFR'S RATING

15.1.2 Paramètres d'étalonnage en débit (FCF, FT)

Deux valeurs distinctes sont utilisées pour décrire l'étalonnage en débit : une valeur FCF de 6 caractères et une valeur FT de 4 caractères. Elles sont indiquées sur la plaque signalétique du capteur.

Ces ceux valeurs contiennent un point décimal (équivalent de la virgule décimale française). Lors de la caractérisation, elles peuvent être entrées sous la forme de deux valeurs ou d'une chaîne unique de 10 caractères. La chaîne de 10 caractères est appelée Flowcal (Etalonnage en débit) ou FCF.

Si la plaque signalétique de votre capteur indique les valeurs FCF et FT alors que vous avez besoin d'une seule valeur, concaténez les deux valeurs de manière à former cette valeur unique.

Si la plaque signalétique de votre capteur indique une valeur Flowcal (Etalonnage de débit) ou FCF concaténée et que vous ayez besoin d'entrer les valeurs FCF et FT séparément, divisez la valeur concaténée en deux :

- FCF = Les 6 premiers caractères, point décimal inclus
- FT = Les 4 premiers caractères, point décimal inclus

Exemple : Concaténation des valeurs FCF et FT

```
FCF = x.xxxx
FT = y.yy
Flow calibration parameter: x.xxxxy.yy
```

Exemple : Séparation des valeurs Flowcal (Etalonnage en débit) et FCF

Flow calibration parameter: x.xxxy.yy FCF = x.xxxx FT = y.yy

15.1.3 Paramètres d'étalonnage en masse volumique (D1, D2, K1, K2, FD, DT, TC)

Les paramètres d'étalonnage en masse volumique figurent généralement sur la plaque signalétique du capteur et sur le certificat d'étalonnage.

Si les valeurs de D1 et de D2 ne sont pas inscrites sur la plaque signalétique du capteur :

- Pour D1, entrez la valeur Dens A ou D1 inscrite sur le certificat d'étalonnage. Cette valeur correspond à la masse volumique aux conditions de service du fluide d'étalonnage de faible masse volumique. Micro Motion utilise de l'air. Si vous ne trouvez pas de valeur pour Dens A ou D1, entrez 0,001 g/cm³.
- Pour D2, entrez la valeur Dens B ou D2 inscrite sur le certificat d'étalonnage. Cette valeur correspond à la masse volumique aux conditions de service du fluide d'étalonnage de forte masse volumique. Micro Motion utilise de l'eau. Si vous ne trouvez pas de valeur pour Dens B ou D2, entrez 0,998 g/cm³.

Si les valeurs de K1 et de K2 ne sont pas inscrites sur la plaque signalétique du capteur :

- Pour K1, entrez les 5 premiers chiffres du coefficient d'étalonnage en masse volumique. Sur l'étiquette illustrée en exemple, cette valeur correspond à 12500.
- Pour K2, entrez le deuxième groupe de 5 chiffres du coefficient d'étalonnage en masse volumique. Sur l'étiquette illustrée en exemple, cette valeur correspond à 14286.

Si la valeur de FD n'est pas inscrite sur la plaque signalétique du capteur, contactez le service après-vente de Micro Motion.

Si la valeur de DT ou TC n'est pas inscrite sur la plaque signalétique du capteur, entrez les 3 derniers chiffres du coefficient d'étalonnage en masse volumique. Sur l'étiquette illustrée en exemple, cette valeur correspond à 4,44.

15.2 Configurer les paramètres de mesure du débit massique

Les paramètres de mesure du débit massique déterminent comment le débit massique est mesuré et signalé.

Les paramètres de mesure du débit massique sont les suivants :

- Unité de mesure du débit massique
- Amortissement du débit
- Seuil de coupure du débit massique

15.2.1 Configurer l'Unité de mesure du débit massique

ProLink II	ProLink > Configuration > Flow > Mass Flow Units
ProLink III	Device Tools > Configuration > Process Measurement > Flow
PROFIBUS EDD	Configure > Manual Setup > Measurements > Flow > Mass Flow Unit
PROFIBUS bus pa- rameters	Block: Measurement, Index 5

Vue d'ensemble

L'Unité de mesure du débit massique correspond à l'unité de mesure utilisée pour le débit massique. L'unité utilisée pour le total partiel en masse et le total général en masse est dérivée de cette unité.

Procédure

Réglez l'Unité de mesure du débit massique sur l'unité à utiliser.

La valeur par défaut de l'Unité de mesure du débit massique est g/sec (grammes par seconde).

Options disponibles pour le paramètre for Unité de mesure du débit massique

Le transmetteur propose un ensemble standard d'unités de mesure pour le paramètre Unité de mesure du débit massique, ainsi qu'une unité de mesure spéciale définie par l'utilisateur. Les différents outils de communication peuvent mentionner des intitulés différents pour les unités.
	Intitulé		
Description de l'unité	ProLink II	ProLink III	
Gramme par seconde	g/sec	g/sec	
Gramme par minute	g/min	g/min	
Gramme par heure	g/h	g/hr	
Kilogramme par seconde	kg/s	kg/sec	
Kilogramme par minute	kg/min	kg/min	
Kilogramme par heure	kg/h	kg/hr	
Kilogramme par jour	kg/jour	kg/day	
Tonne métrique par minute	t/min	mTon/min	
Tonne métrique par heure	t/h	mTon/hr	
Tonne métrique par jour	t/jour	mTon/day	
Livre par seconde	lb/s	lbs/sec	
Livre par minute	lbs/min	lbs/min	
Livre par heure	lb/h	lbs/hr	
Livre par jour	lb/jour	lbs/day	
Tonne courte (US, 2000 lb) par minute	tonne US/min	sTon/min	
Tonne courte (US, 2000 lb) par heure	tonne US/h	sTon/hr	
Tonne courte (US, 2000 lb) par jour	tonne US/jour	sTon/day	
Tonne forte (UK, 2240 lb) par heure	tonne UK/h	ITon/hr	
Tonne forte (UK, 2240 lb) par jour	tonne UK/jour	ITon/day	

Tableau 15-1: Options disponibles pour le paramètre for Unité de mesure du débit massique

15.2.2 Configurer l'Amortissement du débit

ProLink II	ProLink > Configuration > Flow > Flow Damp
ProLink III	Device Tools > Configuration > Process Measurement > Flow
PROFIBUS EDD	Configure > Manual Setup > Measurements > Flow > Flow Damping
PROFIBUS bus pa- rameters	Block: Measurement, Index 12

Vue d'ensemble

L'amortissement permet de lisser les fluctuations faibles et rapides lors des mesures de procédé. Le paramètre Valeur d'amortissement spécifie la période de temps (en secondes) au sein de laquelle le transmetteur étalera les variations dans la grandeur mesurée indiquée. A la fin de l'intervalle, la grandeur mesurée indiquée reflétera 63 % de la variation de la grandeur mesurée réelle.

Procédure

Réglez le paramètre Amortissement du débit sur la valeur que vous souhaitez utiliser.

La valeur par défaut est de 0,04 seconde. La plage est comprise entre 0 et 40,96 secondes.

Conseils

- Une valeur d'amortissement élevée rend la grandeur mesurée plus lisse car la valeur indiquée varie lentement.
- Une valeur d'amortissement faible rend la grandeur mesurée plus irrégulière car la valeur indiquée change plus rapidement.
- S'il y a à la fois une valeur d'amortissement élevée et des variations de débit importantes et rapides, les erreurs de mesure peuvent être plus nombreuses.
- Quand la valeur d'amortissement n'est pas nulle, la valeur indiquée est décalée dans le temps par rapport à la valeur réelle car la valeur indiquée est une moyenne calculée dans le temps.
- En général, il est préférable d'utiliser une valeur d'amortissement faible car il y a moins de risques de perdre des données. Il y a également moins de décalage entre la mesure réelle et la valeur indiquée.
- Micro Motion recommande d'utiliser la valeur par défaut de 0,04 seconde.

La valeur saisie est automatiquement arrondie à la valeur inférieure valide la plus proche. Les valeurs valides pour Amortissement du débit sont : 0, 0,04, 0,08, 0,16, ... 40,96.

Effet de l'option Amortissement du débit sur les mesures de volume

L'option Amortissement du débit affecte les mesures de volume pour les données de volume de liquide. L'option Le transmetteur calcule les données de volume à partir des données de débit massique amorti.

Interaction entre les paramètres Amortissement du débit et Amortissement supplémentaire

Dans certains cas, les options Amortissement du débit et Amortissement supplémentaire sont appliquées à la valeur indiquée pour le débit massique.

L'option Amortissement du débit contrôle la vitesse de variation de la variable procédé de débit. L'option Amortissement supplémentaire contrôle la vitesse de variation signalée via la sortie analogique. Si Grandeur représentée par la sortie analogique est défini sur Débit massique et que les options Amortissement du débit et Amortissement supplémentaire sont toutes deux définies sur des valeurs non nulles, l'amortissement du débit est appliqué en premier, puis le calcul de l'amortissement supplémentaire est appliqué au résultat du premier calcul.

15.2.3 Configurer le Seuil de coupure de débit massique pour les applications de dosage

ProLink II	ProLink > Configuration > Flow > Mass Flow Cutoff
ProLink III	Device Tools > Configuration > Process Measurement > Flow
PROFIBUS EDD	Configure > Manual Setup > Measurements > Flow > Mass Flow Cutoff
PROFIBUS bus pa- rameters	Block: Measurement, Index 18

Vue d'ensemble

Si vous effectuez un dosage contrôlé par vanne intégré avec la Source de débit réglée sur Débit massique, vous devez régler le Seuil de coupure de débit massique sur une valeur qui masque les effets de vibrations et d'autres facteurs environnementaux. Ceci est nécessaire car le transmetteur ne terminera le dosage que s'il détecte un débit nul.

Si la Source de débit est réglée sur Débit volumique, le Seuil de coupure de débit massique n'affecte pas le dosage.

Prérequis

Vérifiez que la valeur du zéro dans le transmetteur est exacte.

Procédure

- 1. Réglez le Seuil de coupure de débit massique sur 0.
- 2. Arrêtez le débit dans le capteur.
- 3. Mettez le doseur sous tension et toute autre source de vibrations.
- 4. Observez le débit massique indiqué.
- 5. Réglez le Seuil de coupure de débit massique sur une valeur légèrement supérieure à celle du débit massique indiqué.
- 6. Vérifiez que le débit massique indiqué est de 0.

Postrequis

Important

Les modifications apportées au Seuil de coupure de débit massique affectent la correction automatique d'erreur de jetée (AOC). Si vous avez implémenté une correction AOC standard, vous devez répéter l'étalonnage AOC si vous modifiez la valeur du Seuil de coupure de débit massique. Cette exigence ne s'applique pas à une correction AOC variable ou fixe.

15.2.4 Configurer le Seuil de coupure de débit massique

ProLink II	ProLink > Configuration > Flow > Mass Flow Cutoff
ProLink III	Device Tools > Configuration > Process Measurement > Flow
PROFIBUS EDD	Configure > Manual Setup > Measurements > Flow > Mass Flow Cutoff
PROFIBUS bus pa- rameters	Block: Measurement, Index 18

Vue d'ensemble

Le Seuil de coupure de débit massique correspond au débit massique le plus bas qui puisse être considéré comme mesuré. Tout débit massique inférieur à ce seuil sera indiqué comme étant nul (0).

Remarque

Si vous configurez le Seuil de coupure de débit massique pour une application de dosage contrôlé par une vanne intégrée et que la Source de débit est réglée sur Débit massique, voir *Section 15.2.3*.

Procédure

Réglez le paramètre Seuil de coupure de débit massique sur la valeur que vous souhaitez utiliser.

La valeur par défaut de Seuil de coupure de débit massique est de 0,0 g/sec ou une valeur spécifique au capteur réglée en usine. Le réglage recommandé est de 0,05 % du débit maximum du capteur ou une valeur supérieure au débit le plus haut attendu. Ne réglez pas le Seuil de coupure de débit massique sur 0,0 g/sec.

Effet de l'option Seuil de coupure du débit massique sur les mesures de volume

L'option Seuil de coupure du débit massique n'affecte pas les mesures de volume. Les données de volume sont calculées à partir des données de masse réelles et non de la valeur indiquée.

Interaction entre les paramètres Seuil de coupure du débit massique **et** Seuil de coupure de la sortie analogique

Le paramètre Seuil de coupure du débit massique définit le débit massique le plus bas que le transmetteur indiquera comme mesuré. Le paramètre Seuil de coupure de la sortie analogique définit le débit le plus bas qui sera indiqué par la sortie analogique. Si le paramètre Grandeur représentée par la sortie analogique est défini sur Débit massique, le débit massique indiqué par la sortie analogique est contrôlé par la plus haute des deux valeurs de seuil de coupure.

Le paramètre Seuil de coupure du débit massique affecte toutes les valeurs indiquées, ainsi que les valeurs intervenant dans les autres fonctions du transmetteur (par exemple, pour les événements associés au débit massique).

Le paramètre Seuil de coupure de la sortie analogique affecte uniquement les valeurs de débit massique indiquées par la sortie analogique.

Exemple : Interaction entre les seuils de coupure quand Seuil de coupure de la sortie analogique **est inférieur à** Seuil de coupure du débit massique

Configuration :

- Grandeur représentée par la sortie analogique : Débit massique
- Grandeur représentée par la sortie impulsions : Débit massique
- Seuil de coupure de la sortie analogique : 10 g/s
- Seuil de coupure du débit massique : 15 g/s

Résultat : si le débit massique tombe en dessous de 15 g/s, le débit massique indiqué sera nul, et ce débit nul sera utilisé pour toutes les opérations internes.

Exemple : Interaction entre les seuils de coupure quand Seuil de coupure de la sortie analogique **est supérieur à** Seuil de coupure du débit massique

Configuration :

- Grandeur représentée par la sortie analogique : Débit massique
- Grandeur représentée par la sortie impulsions : Débit massique
- Seuil de coupure de la sortie analogique : 15 g/s
- Seuil de coupure du débit massique : 10 g/s

Résultat :

- Si le débit massique tombe en dessous de 15 g/s mais pas en dessous de 10 g/s :
 - La sortie analogique indiquera un débit nul.
 - La sortie impulsions indiquera le débit réel, et ce débit réel sera utilisé dans toutes les opérations internes.
- Si le débit massique tombe en dessous de 10 g/s, les deux sorties indiqueront un débit nul, et ce débit nul sera utilisé dans toutes les opérations internes.

15.3 Configurer la mesure de débit volumique pour les applications sur liquide

Les paramètres de mesure du débit volumique déterminent comment le débit volumique du liquide est mesuré et signalé.

15.3.1 Configurer l'Unité de mesure du débit volumique pour les applications sur liquide

ProLink II	ProLink > Configuration > Flow > Vol Flow Units
ProLink III	Device Tools > Configuration > Process Measurement > Flow
PROFIBUS EDD	Configure > Manual Setup > Measurements > Flow > Volume Flow Unit
PROFIBUS bus pa- rameters	Block: Measurement, Index 11

Vue d'ensemble

L'Unité de mesure du débit volumique correspond à l'unité de mesure du débit volumique qui est affiché. L'unité utilisée pour le total partiel en volume et le total général en volume est basée sur cette unité.

Prérequis

Avant de configurer l'Unité de mesure du débit volumique, veillez à ce que le Type de débit volumique soit réglé sur Liquide.

Procédure

Réglez l'Unité de mesure du débit volumique sur l'unité à utiliser.

La valeur par défaut de l'Unité de mesure du débit volumique est l/sec (litres par seconde).

Options disponibles pour le paramètre Unité de mesure de débit volumique **pour les applications sur liquide**

Le transmetteur propose un ensemble standard d'unités de mesure pour le paramètre Mesure de débit de volume, ainsi qu'une unité de mesure définie par l'utilisateur. Les différents outils de communication peuvent mentionner des intitulés différents pour les unités.

	Intitulé	
Description de l'unité	ProLink II	ProLink III
Pied cube par seconde	ft3/s	ft3/sec
Pied cube par minute	ft3/min	ft3/min
Pied cube par heure	ft3/h	ft3/hr
Pieds cube par jour	ft3/d	ft3/day
Mètre cube par seconde	m3/s	m3/sec
Mètre cube par minute	m3/min	m3/min
Mètre cube par heure	m3/h	m3/hr
Mètre cube par jour	m3/j	m3/day
Gallon US par seconde	gal US/s	US gal/sec
Gallon US par minute	gal US/min	US gal/min
Gallon US par heure	gal US/h	US gal/hr
Gallon US par jour	Gal US/jour	US gal/day
Million de gallons US par jour	Mgal US/jour	mil US gal/day
Litre par seconde	l/s	l/sec
Litre par minute	l/min	l/min
Litre par heure	l/h	l/hr
Million de litres par jour	mil l/j	mil I/day
Gallon impérial par seconde	gal imp/s	Imp gal/sec
Gallon impérial par minute	gal imp/min	Imp gal/min
Gallon impérial par heure	gal imp/h	Imp gal/hr
Gallon impérial par jour	gal imp/jour	Imp gal/day
Baril par seconde ⁽¹⁾	baril/s	barrels/sec
Baril par minute ⁽¹⁾	baril/min	barrels/min
Baril par heure ⁽¹⁾	baril/h	barrels/hr
Baril par jour ⁽¹⁾	baril/jour	barrels/day
Baril de bière par seconde ⁽²⁾	Baril de bière/s	Beer barrels/sec
Baril de bière par minute ⁽²⁾	Baril de bière/min	Beer barrels/min
Baril de bière par heure ⁽²⁾	Baril de bière/h	Beer barrels/hr
Baril de bière par jour ⁽²⁾	Baril de bière/jour	Beer barrels/day

Tableau 15-2:	Options dis	ponibles p	pour le	paramètre f	or Unité	de mesure	de débit v	olumique/
---------------	--------------------	------------	---------	-------------	-----------------	-----------	------------	-----------

(1) Baril de pétrole (42 gallons US)

(2) Baril de bière US = 31 gallons US

15.3.2 Configurer le Seuil de coupure de débit volumique pour les applications de dosage

ProLink II	ProLink > Configuration > Flow > Vol Flow Cutoff
ProLink III	Device Tools > Configuration > Process Measurement > Flow
PROFIBUS EDD	Configure > Manual Setup > Measurements > Flow > Volume Flow Cutoff
PROFIBUS bus pa- rameters	Block: Measurement, Index 19

Vue d'ensemble

Si vous effectuez un dosage contrôlé par vanne intégré avec la Source de débit réglée sur Débit volumique, vous devez régler le Seuil de coupure de débit volumique sur une valeur qui masque les effets de vibrations et d'autres facteurs environnementaux. Ceci est nécessaire car le transmetteur ne terminera le dosage que s'il détecte un débit nul.

Si la Source de débit est réglée sur Débit massique, le Seuil de coupure de débit massique n'affecte pas le dosage.

Prérequis

Vérifiez que la valeur du zéro dans le transmetteur est exacte.

Procédure

- 1. Réglez le Seuil de coupure de débit volumique sur 0.
- 2. Arrêtez le débit dans le capteur.
- 3. Mettez le doseur sous tension et toute autre source de vibrations.
- 4. Observez le débit volumique indiqué.
- 5. Réglez le Seuil de coupure de débit volumique sur une valeur légèrement supérieure à celle du débit volumique indiqué.
- 6. Vérifiez que le débit volumique indiqué est de 0.

Postrequis

Important

Les modifications apportées au Seuil de coupure de débit volumique affectent la correction automatique d'erreur de jetée (AOC). Si vous avez implémenté une correction AOC standard, vous devez répéter l'étalonnage AOC si vous modifiez la valeur du Seuil de coupure de débit volumique. Cette exigence ne s'applique pas à une correction AOC variable ou fixe.

15.3.3 Configurer le Seuil de coupure de débit volumique

ProLink II	ProLink > Configuration > Flow > Vol Flow Cutoff
ProLink III	Device Tools > Configuration > Process Measurement > Flow
PROFIBUS EDD	Configure > Manual Setup > Measurements > Flow > Volume Flow Cutoff
PROFIBUS bus pa- rameters	Block: Measurement, Index 19

Vue d'ensemble

Le Seuil de coupure de débit volumique correspond au débit massique le plus bas qui puisse être considéré comme mesuré. Tout débit volumique inférieur à ce seuil sera indiqué comme étant nul (0).

Remarque

Si vous configurez le Seuil de coupure de débit volumique pour une application de dosage contrôlé par une vanne intégrée et que la Source de débit est réglée sur Débit volumique, voir *Section* 15.3.2.

Procédure

Réglez le paramètre Seuil de coupure de débit volumique sur la valeur que vous souhaitez utiliser.

La valeur par défaut du Seuil de coupure de débit volumique est de 0,0 l/sec (litres par seconde). La limite inférieure est 0. La limite supérieure correspond au coefficient d'étalonnage en débit du capteur (exprimé en l/sec, multiplié par 0.2.

Interaction entre seuil de coupure du débit volumique **et** seuil de coupure de la sortie analogique

Le seuil de coupure du débit volumique définit la plus faible valeur de débit volumique de liquide que l'émetteur est capable de mesurer. Le seuil de coupure de la sortie analogique définit le plus faible débit qui sera indiqué par la sortie analogique. Si le mesurande représenté par la sortie analogique est réglé sur Débit volumique, le débit volumique indiqué par la sortie analogique est contrôlé par la plus haute des deux valeurs de seuil de coupure.

Le seuil de coupure du débit volumique affecte à la fois les valeurs de débit volumique indiquées par les sorties et les valeurs de débit volumique utilisées dans d'autres processus de l'émetteur (par exemple, événements définis en fonction du débit volumique).

Le seuil de coupure de la sortie analogique affecte uniquement les valeurs de débit indiquées par la sortie analogique.

Exemple : Interaction entre les seuils de coupure lorsque le seuil de coupure de la sortie analogique **est plus faible que le** seuil de coupure du débit volumique

Configuration :

- Mesurande représenté par la sortie analogique : Débit volumique
- Grandeur représentée par la sortie impulsions : Débit volumique
- Seuil de coupure de la sortie analogique : 10 l/s
- Seuil de coupure du débit volumique : 15 l/s

Résultat : Si le débit volumique chute en dessous de 15 l/s, il sera indiqué comme étant égal à 0, et 0 sera utilisé dans toutes les procédures internes.

Exemple : Interaction entre les seuils de coupure lorsque le seuil de coupure de la sortie analogique **est plus élevé que le** seuil de coupure du débit volumique

Configuration:

- Mesurande représenté par la sortie analogique : Débit volumique
- Grandeur représentée par la sortie impulsions : Débit volumique

- Seuil de coupure de la sortie analogique : 15 l/s
- Seuil de coupure du débit volumique : 10 l/s

Le résultat :

- Si le débit volumique tombe en dessous de 15 l/s, mais reste supérieur à 10 l/s :
 - La sortie analogique indiquera un débit nul.
 - La sortie impulsions indiquera le débit réel, et le débit réel sera utilisé dans toutes les procédures internes.
- Si le débit volumique chute en dessous de 10 l/s, les deux sorties indiqueront un débit nul, et 0 sera utilisé dans toutes les procédures internes.

15.4 Configurer le Sens d'écoulement

ProLink II	ProLink > Configuration > Flow > Flow Direction
ProLink III	Device Tools > Configuration > Process Measurement > Flow
PROFIBUS EDD	Configure > Manual Setup > Measurements > Flow > Flow Direction
PROFIBUS bus pa- rameters	Block: Measurement, Index 21

Vue d'ensemble

Le Sens d'écoulement détermine comment l'écoulement vers l'avant et vers l'arrière affecte la mesure et la transmission du débit.

Le Sens d'écoulement est défini par la flèche du débit sur le capteur :

- Un écoulement est dit normal ou positif s'il est dans le même sens que la flèche qui est gravée sur le capteur.
- Un écoulement est dit inverse ou négatif s'il est dans le sens opposé à la flèche qui est gravée sur le capteur.

Conseil

Micro Motion Les capteurs sont bidirectionnels. La précision de la mesure n'est pas affectée par le sens d'écoulement ou par le paramètre Sens d'écoulement.

Procédure

Réglez le paramètre Sens d'écoulement sur la valeur que vous souhaitez utiliser.

15.4.1 Options disponibles pour le paramètre Sens d'écoulement

Paramètre Sens d'écoulement		Relation par rapport à la flèche Sens d'écoule-	
ProLink II	ProLink III	ment sur le capteur	
Normal	Forward	Approprié lorsque la flèche Sens d'écoulement in- dique la même direction que la majorité de l'écoulement.	

Tableau 15-3: Options disponibles pour le paramètre Sens d'écoulement

Paramètre Sens d'écoulement		Relation par rapport à la flèche Sens d'écoule-	
ProLink II	ProLink III	ment sur le capteur	
Bidirectionnel	Bidirectional	Approprié lorsqu'un écoulement normal et in- verse sont attendus, et que l'écoulement normal domine, mais que l'écoulement inverse est signifi- catif.	
Inversion numérique normal	Negate Forward	Approprié lorsque la flèche Sens d'écoulement in- dique la direction opposée à la majorité de l'écoulement.	
Inversion numérique bidirectionnel	Negate Bidirectional	Approprié lorsqu'un écoulement normal et in- verse sont attendus, et que l'écoulement normal domine, mais que l'écoulement inverse est signifi- catif.	

Tableau 15-3: Options disponibles pour le paramètre Sens d'écoulement (suite)

Effet du paramètre Sens d'écoulement sur les sorties analogiques

Le paramètre Sens d'écoulement affecte la manière dont le transmetteur indique les valeurs de débit via les sorties analogiques. Les sorties analogiques ne sont affectées par le paramètre Sens d'écoulement que si le paramètre Grandeur représentée par la sortie analogique est défini sur une variable de débit.

Exemple : Sens d'écoulement = Normal et Valeur basse d'échelle = 0

Configuration :

- Sens d'écoulement = Normal
- Valeur basse d'échelle = 0 g/s
- Valeur haute d'échelle = 100 g/s

Résultat :

- Si le fluide s'écoule dans la direction opposée à la flèche du capteur ou si le débit est nul, la sortie analogique est à 4 mA.
- Si le fluide s'écoule dans la même direction que la flèche du capteur, jusqu'à un débit de 100 g/s, le niveau de la sortie analogique varie entre 4 mA et 20 mA proportionnellement au débit.
- Si le fluide s'écoule dans la même direction que la flèche du capteur et que le débit est égal ou supérieur à 100 g/s, le niveau de la sortie analogique continue de varier proportionnellement au débit jusqu'à 20,5 mA, puis il reste à 20,5 mA si le débit continue d'augmenter.

Exemple : Sens d'écoulement = Normal et Valeur basse d'échelle < 0

Configuration :

- Sens d'écoulement = Normal
- Valeur basse d'échelle = -100 g/s
- Valeur haute d'échelle = +100 g/s

Résultat :

- Si le débit est nul, la sortie analogique est à 12 mA.
- Si le fluide s'écoule dans la même direction que la flèche du capteur, pour un débit compris entre 0 et +100 g/s, le niveau de la sortie analogique varie entre 12 mA et 20 mA proportionnellement à la valeur absolue du débit.
- Si le fluide s'écoule dans la même direction que la flèche du capteur et que la valeur absolue du débit est égale ou supérieure à 100 g/s, le niveau de la sortie analogique continue de varier proportionnellement au débit jusqu'à 20,5 mA, puis il reste à 20,5 mA si le débit continue d'augmenter.
- Si le fluide s'écoule dans la direction opposée à la flèche du capteur, pour un débit compris entre 0 et -100 g/s, le niveau de la sortie analogique varie entre 4 mA et 12 mA de manière inversement proportionnelle à la valeur absolue du débit.
- Si le fluide s'écoule dans la direction opposée à la flèche du capteur et que la valeur absolue du débit est égale ou supérieure à 100 g/s, le niveau de la sortie analogique varie de manière inversement proportionnelle au débit pour descendre jusqu'à 3,8 mA, puis il reste à 3,8 mA si la valeur absolue continue d'augmenter.

Effet du paramètre Sens d'écoulement sur les sorties impulsions

Le paramètre Sens d'écoulement affecte la manière dont le transmetteur indique les valeurs de débit via les sorties impulsions . Les sorties impulsions ne sont affectées par l'option Sens d'écoulement que si l'option Grandeur représentée par la sortie impulsions est définie sur une variable de débit.

	Sens d'écoulement réel		
Paramètre Sens d'écoulement	Normal	Débit nul	Inverse
Normal	Hz > 0	0 Hz	0 Hz
Bidirectionnel	Hz > 0	0 Hz	Hz > 0
Inversion numérique normal	0 Hz	0 Hz	Hz > 0
Inversion numérique bidirectionnel	Hz > 0	0 Hz	Hz > 0

Tableau 15-4: Effet du paramètre Sens d'écoulement et du sens d'écoulement réel sur les sorties impulsions

Effet du paramètre Sens d'écoulement sur les sorties TOR

Le paramètre Sens d'écoulement n'affecte le fonctionnement des sorties TOR que si Origine de la sortie TOR est défini sur Sens d'écoulement.

Tableau 15-5: Effet du paramètre Sens d'écoulement et du sens d'écoulement réel sur les sorties TOR

	Sens d'écoulement réel		
Paramètre Sens d'écoulement	Normal	Débit nul	Inverse
Normal	Désactivé	Désactivé	Activé
Inverse	Désactivé	Désactivé	Activé
Bidirectionnel	Désactivé	Désactivé	Activé
Valeur absolue	Désactivé	Désactivé	Désactivé
Inversion numérique normal	Activé	Désactivé	Désactivé

Tableau 15-5: Effet du paramètre Sens d'écoulement et du sens d'écoulement réel sur les sorties TOR (suite)

	Sens d'écoulement réel		
Paramètre Sens d'écoulement	Normal	Débit nul	Inverse
Inversion numérique bidirectionnel	Activé	Désactivé	Désactivé

Effet du paramètre Sens d'écoulement sur la communication numérique

Le paramètre Sens d'écoulement affecte la manière dont les valeurs de débit sont indiquées par la communication numérique.

Tableau 15-6:Effet du paramètre Sens d'écoulement et du sens d'écoulement réel sur les
valeurs de débit indiquées via la communication numérique

	Sens d'écoulement réel		
Paramètre Sens d'écoulement	Normal	Débit nul	Inverse
Normal	Positif	0	Négatif
Bidirectionnel	Positif	0	Négatif
Inversion numérique normal	Négatif	0	Positif
Inversion numérique bidirectionnel	Négatif	0	Positif

Effet du paramètre Sens d'écoulement sur les totaux de débit

Le paramètre Sens d'écoulement affecte la manière dont les totaux et les totalisateurs de débit sont calculés.

Paramètre Sens d'écoule-	Sens d'écoulement réel		
ment	Normal	Débit nul	Inverse
Normal	Les totaux augmen-	Les totaux ne varient	Les totaux ne varient
	tent	pas	pas
Bidirectionnel	Les totaux augmen- tent	Les totaux ne varient pas	Les totaux diminuent
Inversion numérique normal	Les totaux ne varient	Les totaux ne varient	Les totaux augmen-
	pas	pas	tent
Inversion numérique bidirec-	Les totaux diminuent	Les totaux ne varient	Les totaux augmen-
tionnel		pas	tent

Tableau 15-7: Effet du paramètre Sens d'écoulement et du sens d'écoulement réel sur les
totaux et les totalisateurs de débit

Effet du paramètre Sens d'écoulement sur le total de dosage

Le paramètre Sens d'écoulement affecte la manière dont le transmetteur mesure les dosages et détermine à quel moment le dosage est terminé (le total de dosage est atteint).

Paramètre Sens	Sens d'écoulement réel		
d'écoulement	Normal	Débit nul	Inverse
Normal	Le total de dosage	Le total de dosage ne	Le total de dosage ne
	augmente	varie pas	varie pas
Bidirectionnel	Le total de dosage	Le total de dosage ne	Le total de dosage di-
	augmente	varie pas	minue
Inversion numérique nor-	Le total de dosage ne	Le total de dosage ne	Le total de dosage
mal	varie pas	varie pas	augmente
Inversion numérique bidir-	Le total de dosage di-	Le total de dosage ne	Le total de dosage
ectionnel	minue	varie pas	augmente

Tableau 15-8: Effet du paramètre Sens d'écoulement et du sens d'écoulement réel sur le
total de dosage

Ecoulement normalEcoulement dans la même direction que la flèche du capteurEcoulement inverseEcoulement dans le sens opposé à la flèche du capteur

Conseil

Si une inversion d'écoulement risque de se produire dans votre procédé et de provoquer des problèmes de cohérence, Micro Motion recommande de définir le paramètre Sens d'écoulement sur Bidirectionnel ou sur Inversion numérique bidirectionnel.

Remarque

Le paramètre Sens d'écoulement affecte également les valeurs de dosage indiquées via la sortie analogique, la sortie impulsions et la communication numérique. Il affecte également les valeurs de débit indiquées via la sortie analogique, la sortie impulsions et la communication numérique.

15.5

Configurer la mesure de la masse volumique

Les paramètres de mesure de la masse volumique déterminent comment la masse volumique est mesurée et signalée. La mesure de la masse volumique (avec la mesure massique) est utilisée pour déterminer le débit volumique d'un fluide.

Les paramètres de mesure de la masse volumique sont les suivants :

- Unité de mesure de la masse volumique
- Paramètres d'écoulement biphasique
- Amortissement de la masse volumique
- Seuil de coupure de la masse volumique

15.5.1 Configurer l'Unité de mesure de la masse volumique

ProLink II	ProLink > Configuration > Density > Density Units
ProLink III	Device Tools > Configuration > Process Measurement > Density
PROFIBUS EDD	Configure > Manual Setup > Measurements > Density > Density Unit
PROFIBUS bus pa- rameters	Block: Measurement, Index 9

Vue d'ensemble

L'Unité de mesure de la masse volumique spécifie les unités de mesure qui s'affichent pour la mesure de la masse volumique.

Procédure

Réglez le paramètre Unité de mesure de la masse volumique sur l'option que vous souhaitez utiliser.

La valeur par défaut de l'Unité de mesure de la masse volumique est g/cm3 (grammes par centimètre cube).

Options pour le paramètre Unité de mesure de débit volumique

Le transmetteur propose un ensemble standard d'unités pour l'option Unité de mesure de débit volumique. Les différents outils de communication peuvent mentionner des intitulés différents.

Tableau 15-9: Options pour le paramètre Unité de mesure de débit volumique

	Intitulé	
Description de l'unité	ProLink II	ProLink III
Densité (à la température de service)	SGU	SGU
Gramme par centimètre cube	g/cm3	g/cm3
Gramme par litre	g/l	g/l
Gramme par millilitre	g/ml	g/ml
Kilogramme par litre	kg/l	kg/l
Kilogramme par mètre cube	kg/m3	kg/m3
Livre par gallon US	Ib/gal US	lbs/Usgal
Livre par pied cube	lb/ft3	lbs/ft3
Livre par pouce cube	lb/in3	lbs/in3
Densité API	deg API	degAPI
Tonne US par yard cube	tonne US/yd3	sT/yd3

15.5.2 Configurer les paramètres d'écoulement biphasique

ProLink II	ProLink > Configuration > Density > Slug High Limit
	ProLink > Configuration > Density > Slug Low Limit
	ProLink > Configuration > Density > Slug Duration
ProLink III	Device Tools > Configuration > Process Measurement > Density
PROFIBUS EDD	Configure > Manual Setup > Measurements > Density > Slug Low Limit
	Configure > Manual Setup > Measurements > Density > Slug High Limit
	Configure > Manual Setup > Measurements > Density > Slug Duration
PROFIBUS bus pa-	Slug Low Limit: Block: Diagnostic, Index 2
rameters	Slug High Limit: Block: Diagnostic, Index 3
	Slug Duration: Block: Diagnostic, Index 1

Vue d'ensemble

Les paramètres d'écoulement biphasique déterminent comment le transmetteur détecte et signale un écoulement à deux phases (gaz dans un procédé liquide ou liquide dans un procédé gazeux).

Procédure

1. Réglez la Limite biphasique inférieure sur la valeur de densité la plus basse considérée comme normale dans le procédé.

Les valeurs inférieures à celle-ci entraîneront le transmetteur à exécuter l'action d'écoulement biphasique configurée. Cette valeur est généralement la valeur de densité la plus basse de la plage normale du procédé.

Conseil

Une fuite de gaz peut entraîner une chute temporaire de la densité du procédé. Pour réduire la génération d'alarmes d'écoulement biphasique inutiles pour votre procédé, réglez une Limite biphasique inférieure légèrement en dessous de la densité de procédé la plus basse.

Vous devez saisir la Limite biphasique inférieure dans g/cm^3 , même si vous avez configuré une autre unité de mesure de densité.

La valeur par défaut de Limite biphasique inférieure est de 0,0 g/cm³. La plage est comprise entre 0,0 et 10,0 g/cm³.

2. Réglez la Limite biphasique supérieure sur la valeur de densité la plus haute considérée comme normale dans le procédé.

Les valeurs supérieures à celle-ci entraîneront le transmetteur à exécuter l'action d'écoulement biphasique configurée. Cette valeur est généralement la valeur de densité la plus haute de la plage normale du procédé.

Conseil

Pour réduire la génération d'alarmes d'écoulement biphasique inutiles pour votre procédé, réglez une Limite biphasique supérieure légèrement au-dessus de la densité de procédé la plus haute.

Vous devez saisir la Limite biphasique supérieure dans g/cm^3 , même si vous avez configuré une autre unité de mesure de densité.

La valeur par défaut de Limite biphasique supérieure est de 5,0 g/cm³. La plage est comprise entre 0,0 et 10,0 g/cm³.

3. Réglez la Durée biphasique sur le délai d'attente (en secondes) du transmetteur, avant la suppression d'une condition d'écoulement biphasique, pour pouvoir exécuter l'action d'écoulement biphasique configurée.

La valeur par défaut de Durée biphasique est de 0,0 seconde. La plage est comprise entre 0,0 et 60,0 secondes.

Conseil

Pour les applications de dosage, Micro Motion recommande de conserver la valeur par défaut de Durée biphasique.

Détection et indication d'écoulement biphasique

Un écoulement biphasique est un écoulement qui se fait en deux phases (poches de gaz dans un procédé liquide ou poches de liquide dans un procédé gaz). Les écoulements biphasiques peuvent provoquer divers problèmes de contrôle de procédé. En configurant correctement les paramètres d'écoulement biphasique pour votre application, vous pouvez détecter les conditions de procédé qui ont besoin d'être corrigées.

Conseil

Pour réduire la fréquence des alarmes d'écoulement biphasique, diminuez la valeur de Limite basse d'écoulement biphasique ou augmentez la valeur de Limite haute d'écoulement biphasique.

Une condition d'écoulement biphasique se produit quand la masse volumique mesurée descend en dessous de la valeur définie pour Limite basse d'écoulement biphasique ou augmente au-dessus de la valeur définie pour Limite haute d'écoulement biphasique. Dans pareil cas :

- Une alarme d'écoulement biphasique est générée dans la liste des alarmes actives.
- Toutes les sorties configurées pour représenter le débit maintiennent la dernière valeur de débit mesurée avant l'apparition de l'écoulement biphasique jusqu'à la fin de la durée définie à l'aide du paramètre Durée d'écoulement biphasique.

Si la condition d'écoulement biphasique disparaît avant la fin de la durée définie à l'aide du paramètre Durée d'écoulement biphasique :

- Les sorties représentant le débit recommencent à indiquer le débit réel.
- L'alarme d'écoulement biphasique disparaît, mais elle reste affichée dans la liste des alarmes actives jusqu'à ce qu'elle soit acquittée.

Si la condition d'écoulement biphasique n'a pas disparu avant la fin de la durée définie à l'aide du paramètre Durée d'écoulement biphasique, les sorties qui représentent le débit indiquent un débit nul.

Si le paramètre Durée d'écoulement biphasique est défini sur 0,0 seconde, les sorties représentant le débit indiquent un débit nul dès que l'écoulement biphasique est détecté.

15.5.3 Configurer l'Amortissement de la masse volumique

ProLink II	ProLink > Configuration > Density > Density Damping
ProLink III	Device Tools > Configuration > Process Measurement > Density
PROFIBUS EDD	Configure > Manual Setup > Measurements > Density > Density Damping
PROFIBUS bus pa- rameters	Block: Measurement, Index 14

Vue d'ensemble

L'amortissement permet de lisser les fluctuations faibles et rapides lors des mesures de procédé. Le paramètre Valeur d'amortissement spécifie la période de temps (en secondes) au sein de laquelle le transmetteur étalera les variations dans la grandeur mesurée indiquée. A la fin de l'intervalle, la grandeur mesurée indiquée reflétera 63 % de la variation de la grandeur mesurée réelle.

Procédure

Réglez le paramètre Amortissement de la masse volumique sur la valeur que vous souhaitez utiliser.

La valeur par défaut est de 1,28 seconde. La plage est comprise entre 0 et 40,96 secondes.

Conseils

- Une valeur d'amortissement élevée rend la grandeur mesurée plus lisse car la valeur indiquée varie lentement.
- Une valeur d'amortissement faible rend la grandeur mesurée plus irrégulière car la valeur indiquée change plus rapidement.
- Quand la valeur d'amortissement n'est pas nulle, la valeur indiquée est décalée dans le temps par rapport à la valeur réelle car la valeur indiquée est une moyenne calculée dans le temps.
- En général, il est préférable d'utiliser une valeur d'amortissement faible car il y a moins de risques de perdre des données. Il y a également moins de décalage entre la mesure réelle et la valeur indiquée.

La valeur saisie est automatiquement arrondie à la valeur inférieure valide la plus proche. Les valeurs valides pour Amortissement de la masse volumique sont: 0, 0,04, 0,08, 0,16, ... 40,96.

Effet de l'option Amortissement de la masse volumique sur les mesures de volume

L'option Amortissement de la masse volumique affecte les mesures de volume de liquide. Les volumes de liquide sont calculés à partir de la densité amortie et non de la masse volumique mesurée. L'option

Interaction entre les options Amortissement de la masse volumique **et** Amortissement supplémentaire

Dans certains cas, les options Amortissement de la masse volumique et Amortissement supplémentaire sont appliquées à la valeur indiquée pour la masse volumique.

L'option Amortissement de la masse volumique contrôle la vitesse de variation de la variable procédé de masse volumique. L'option Amortissement supplémentaire contrôle la vitesse de variation signalée via la sortie analogique. Si Grandeur représentée par la sortie analogique est défini sur Masse volumique et que les options Amortissement de la masse volumique et Amortissement supplémentaire sont toutes deux définies sur des valeurs non nulles, l'amortissement de la masse volumique est appliqué en premier, puis le calcul de l'amortissement supplémentaire est appliqué au résultat du premier calcul.

15.5.4 Configurer le Seuil de coupure de la masse volumique

ProLink II	ProLink > Configuration > Density > Low Density Cutoff
ProLink III	Device Tools > Configuration > Process Measurement > Density
PROFIBUS EDD	Configure > Manual Setup > Measurements > Density > Density Cutoff
PROFIBUS bus pa- rameters	Block: Measurement, Index 20

Vue d'ensemble

Le Seuil de coupure de la masse volumique spécifie la valeur de masse volumique inférieure qui sera indiquée comme étant mesurée. Toutes les valeurs de masse volumique inférieures à ce seuil de coupure seront indiquées comme étant de 0.

Procédure

Réglez le paramètre Seuil de coupure de la masse volumique sur la valeur que vous souhaitez utiliser.

La valeur par défaut de Seuil de coupure de la masse volumique est de 0,2 g/cm³. La plage est comprise entre 0,0 g/cm³ et 0,5 g/cm³.

Effet de l'option Seuil de coupure de la masse volumique sur les mesures de volume

Le seuil de coupure de la masse volumique affecte les mesures de volume de liquide. Si la valeur de la masse volumique devient inférieure au seuil de coupure de la masse volumique, le débit volumique indiqué est de 0. Le

15.6 Configurer la mesure de la température

Les paramètre de mesure de la température déterminent comment les données de température du capteur sont transmises. Les données de température sont utilisées pour compenser l'effet de la température sur les tubes du capteur pendant la mesure du débit.

Les paramètres de mesure de la température sont les suivants :

- Unité de mesure de la température
- Amortissement de la température

15.6.1 Configurer l'Unité de mesure de la température

ProLink II	ProLink > Configuration > Temperature > Temp Units
ProLink III	Device Tools > Configuration > Process Measurement > Temperature
PROFIBUS EDD	Configure > Manual Setup > Measurements > Temperature > Temperature Unit
PROFIBUS bus pa- rameters	Block: Measurement, Index 7

Vue d'ensemble

L'Unité de mesure de la température définit l'unité utilisée pour la mesure de la température.

Procédure

Réglez le paramètre Unité de mesure de la température sur l'option que vous souhaitez utiliser.

La valeur par défaut est Degrés Celsius.

Options disponibles pour le paramètre Unité de mesure de température

Le transmetteur propose un ensemble standard d'unités pour l'option Unité de mesure de température. Les différents outils de communication peuvent mentionner des intitulés différents pour les unités.

Tableau 15-10: Options disponibles pour le paramètre Unité de mesure de température

	Intitulé	
Description de l'unité	ProLink II	ProLink III
Degré Celsius	degC	C°
Degré Fahrenheit	degF	°F
Degré Rankine	degR	°R
Degré Kelvin	degK	°K

15.6.2 Configurer l'Amortissement de la température

ProLink II	ProLink > Configuration > Temperature > Temp Damping
ProLink III	Device Tools > Configuration > Temperature
PROFIBUS EDD	Configure > Manual Setup > Measurements > Temperature > Temperature Damping
PROFIBUS bus pa- rameters	Block: Measurement, Index 13

Vue d'ensemble

L'amortissement permet de lisser les fluctuations faibles et rapides lors des mesures de procédé. Le paramètre Valeur d'amortissement spécifie la période de temps (en secondes) au sein de laquelle le transmetteur étalera les variations dans la grandeur mesurée indiquée. A la fin de l'intervalle, la grandeur mesurée indiquée reflétera 63 % de la variation de la grandeur mesurée réelle.

Procédure

Saisissez la valeur que vous souhaitez utiliser pour Amortissement de la température.

La valeur par défaut est de 4,8 secondes. La plage est comprise entre 0,0 et 38,4 secondes.

Conseils

- Une valeur d'amortissement élevée rend la grandeur mesurée plus lisse car la valeur indiquée varie lentement.
- Une valeur d'amortissement faible rend la grandeur mesurée plus irrégulière car la valeur indiquée change plus rapidement.
- Quand la valeur d'amortissement n'est pas nulle, la valeur indiquée est décalée dans le temps par rapport à la valeur réelle car la valeur indiquée est une moyenne calculée dans le temps.
- En général, il est préférable d'utiliser une valeur d'amortissement faible car il y a moins de risques de perdre des données. Il y a également moins de décalage entre la mesure réelle et la valeur indiquée.

La valeur saisie est automatiquement arrondie à la valeur inférieure valide la plus proche. Les valeurs valides pour Amortissement de la température sont 0, 0,6, 1,2, 2,4, 4,8, ... 38,4.

Effet du paramètre Amortissement de la température sur les mesures de procédé

Le paramètre Amortissement de la température affecte le temps de réponse de la compensation de température quand les températures fluctuent. La compensation de température ajuste les mesures de procédé afin de compenser l'effet de la température sur le tube de mesure.

15.7

Configurer la compensation de la pression

La compensation de pression ajuste les mesures de procédé afin de compenser l'effet de la pression sur le capteur. L'effet de la pression correspond au changement de sensibilité du capteur au débit et à la densité dû à la différence de pression entre l'étalonnage et le procédé.

Conseil

N'appliquez la compensation de pression aux applications de dosage que si Micro Motion vous le recommande expressément. Contactez le service client de Micro Motion pour toute question relative à l'effet de la pression sur la mesure du dosage.

15.7.1 Configurer la compensation de la pression à l'aide de ProLink II

Prérequis

Vous aurez besoin du facteur de débit, du facteur de densité et des valeurs de pression d'étalonnage de votre capteur.

- Pour le facteur de débit et le facteur de densité, voir la fiche technique du capteur.
- Pour la pression d'étalonnage, voir la fiche d'étalonnage du capteur. Si les données ne sont pas connues, entrez 20 psi.

Procédure

- 1. Choisissez Affichage > Préférences et vérifiez que la case Activer la compensation de pression externe est cochée.
- 2. Choisissez ProLink > Configuration > Pression.
- 3. Saisissez le Facteur de débit du capteur.

Le facteur de débit représente le pourcentage de variation du débit mesuré par psi. Lors de la saisie de la valeur, inversez le signe.

Exemple :

Si le facteur de débit est de 0,000004 % par psi, saisissez -0,000004 % par PSI.

4. Saisissez le Facteur de densité du capteur.

Le facteur de densité représente la variation de densité du fluide, en g/cm³/psi. Lors de la saisie de la valeur, inversez le signe.

Exemple :

Si le facteur de densité est de 0,000006 g/cm³/psi, saisissez -0,000006 g/cm³/psi.

5. Saisissez la Pression d'étal. du capteur.

La pression d'étalonnage représente la pression à laquelle le capteur a été étalonné, et définit la pression à laquelle l'effet de pression est nul. Si les données ne sont pas connues, entrez 20 psi.

6. Déterminez comment le transmetteur obtiendra les données de pression et procédez à la configuration requise.

Option	Configuration		
Une valeur de press- ion statique config- urée par l'utilisateur	a. Réglez Unités de pression sur l'unité souhaitée.b. Réglez Pression externe sur la valeur souhaitée.		

Option	Configuration			
Interrogation de la pression ⁽³⁾	 a. Vérifiez que la sortie analogique primaire a été raccordée pour prendre en charge l'interrogation HART. b. Choisissez ProLink > Configuration > Variables interrogées. c. Choisissez un emplacement d'interrogation non utilisé. d. Réglez Commande d'interrogation sur Interroger en tant que principal ou Interroger en tant que secondaire, puis cliquez sur Appliquer. e. Réglez Repère externe sur le repère HART de l'appareil de pression externe. f. Réglez Type de variable sur Pression. 			
	 Conseil Interroger en tant que principal : Aucun autre maître HART ne sera 			
	 présent sur le réseau. Interroger en tant que secondaire : D'autres maîtres HART seront présents sur le réseau. Le Field Communicator n'est pas un maî- tre HART. 			
Une valeur écrite par la communica- tion numérique	 a. Réglez Unités de pression sur l'unité souhaitée. b. Procédez à la programmation de l'hôte et à la configuration de la communication nécessaires pour écrire des données de pression dans le transmetteur aux intervalles appropriés. 			

Postrequis

Si vous utilisez une valeur de pression externe, vérifiez la configuration en choisissant ProLink > Variables de procédé et en vérifiant la valeur affichée dans Pression externe.

15.7.2 Configurer la compensation de la pression à l'aide de ProLink III

Prérequis

Vous aurez besoin du facteur de débit, du facteur de densité et des valeurs de pression d'étalonnage de votre capteur.

- Pour le facteur de débit et le facteur de densité, voir la fiche technique du capteur.
- Pour la pression d'étalonnage, voir la fiche d'étalonnage du capteur. Si les données ne sont pas connues, entrez 20 psi.

Procédure

- 1. Choisissez Outils de l'appareil > Configuration > Mesure de procédé > Compensation de pression.
- 2. Réglez Etat de compensation de pression sur Activé.
- 3. Saisissez la Pression d'étalonnage de débit du capteur.

La pression d'étalonnage représente la pression à laquelle le capteur a été étalonné, et définit la pression à laquelle l'effet de pression est nul. Si les données ne sont pas connues, entrez 20 psi.

- 4. Saisissez le Facteur de débit du capteur.
- (3) Non disponible sur tous les transmetteurs.

Le facteur de débit représente le pourcentage de variation du débit mesuré par psi. Lors de la saisie de la valeur, inversez le signe.

Exemple :

Si le facteur de débit est de 0,000004 % par psi, saisissez -0,000004 % par PSI.

5. Saisissez le Facteur de densité du capteur.

Le facteur de densité représente la variation de densité du fluide, en g/cm³/psi. Lors de la saisie de la valeur, inversez le signe.

Exemple :

Si le facteur de densité est de 0,000006 g/cm³/psi, saisissez -0,000006 g/cm³/psi.

6. Réglez Source de pression sur la méthode utilisée par le transmetteur pour obtenir des données de pression.

Option	Description
Interroger un valeur externe ⁽⁴⁾	Le transmetteur interroge un appareil de pression externe via le protocole HART sur la sortie analogique primaire.
Communications statiques ou nu- mériques	 Le transmetteur utilise la valeur de pression qu'il lit dans sa mémoire. Statique : la valeur configurée est utilisée. Communication numérique : un hôte écrit les données dans la mémoire du transmetteur.

- 7. Si vous choisissez d'interroger des données de pression :
 - a. Sélectionnez l'Emplacement d'interrogation à utiliser.
 - b. Réglez Commande d'interrogation sur Interroger en tant que principal ou Interroger en tant que secondaire, puis cliquez sur Appliquer.

Conseil

- Interroger en tant que principal : Aucun autre maître HART ne sera présent sur le réseau.
- Interroger en tant que secondaire : D'autres maîtres HART seront présents sur le réseau. Le Field Communicator n'est pas un maître HART.
- c. Réglez Repère d'appareil externe sur le repère HART de l'appareil de pression externe, puis cliquez sur Appliquer.
- 8. Si vous choisissez d'utiliser une valeur de pression statique :
 - a. Réglez Unité de pression sur l'unité souhaitée.
 - b. Réglez Pression statique ou actuelle sur la valeur à utiliser, puis cliquez sur Appliquer.
- 9. Si vous souhaitez utiliser la communication numérique, cliquez sur Appliquer, puis procédez à la programmation de l'hôte et à la configuration de la communication nécessaires pour écrire des données de pression dans le transmetteur aux intervalles appropriés.

⁽⁴⁾ Non disponible sur tous les transmetteurs.

Postrequis

Si vous utilisez une valeur de pression externe, vérifiez la configuration en vérifiant la valeur de Pression externe affichée dans la zone Entrées de la fenêtre principale.

15.7.3 Options disponibles pour le paramètre Unité de mesure de pression

Le transmetteur propose un ensemble standard d'unités pour l'option Unité de mesure de pression. Les différents outils de communication peuvent mentionner des intitulés différents pour les unités. Dans la plupart des applications, l'unité de mesure de pression doit être réglée pour correspondre à l'unité de mesure de pression utilisée par l'appareil distant.

Tableau 15-11: Options disponibles pour le paramètre Unité de mesure de pression

	Intitulé		
Description de l'unité	ProLink II	ProLink III	
Pied d'eau à 68 °F	Pied d'eau à 68°F	Ft Water @ 68°F	
Pouce d'eau à 4 °C	Pouce d'eau à 4°C	In Water @ 4°C	
Pouce d'eau à 60 °F	Pouce d'eau à 60°F	In Water @ 60°F	
Pouce d'eau à 68 °F	Pouce d'eau à 68°F	In Water @ 68°F	
Millimètre d'eau à 4 °C	Millimètre d'eau à 4°C	mm Water @ 4°C	
Millimètre d'eau à 68 °F	Millimètre d'eau à 68°F	mm Water @ 68°F	
Millimètre de mercure à 0 °C	Millimètre de mercure à 0°C	mm Mercury @ 0°C	
Pouce de mercure à 0 °C	Pouce de mercure à 0°C	In Mercury @ 0°C	
Livre par pouce carré	PSI	PSI	
Bar	bar	bar	
Millibar	mbar	millibar	
Gramme par centimètre carré	g/cm2	g/cm2	
Kilogramme par centimètre carré	kg/cm2	kg/cm2	
Pascal	Ра	pascals	
Kilopascal	Kilopascal	Kilopascals	
Megapascal	МРа	Megapascals	
Torr à 0 °C	Torr à 0°C	Torr @ 0°C	
Atmosphère	atm	atms	

16 Configuration des options de l'appareil et des préférences

Sujets couverts dans ce chapitre:

- Configurer la gestion des alarmes
- Configurer les paramètres d'informations

16.1 Configurer la gestion des alarmes

Les paramètres de gestion des alarmes déterminent la réponse du transmetteur aux conditions de procédé et de l'appareil.

Les paramètres de gestion des alarmes sont les suivants :

- Temporis. défaut
- Gravité des alarmes

16.1.1 Configurer la Temporisation d'indication des défauts

ProLink II	ProLink > Configuration > Frequency > Last Measured Value Timeout
ProLink III	Device Tools > Configuration > Fault Processing
PROFIBUS EDD	Configure > Alert Setup > Alert Severity > Fault Timeout
PROFIBUS bus pa- rameters	Block: Diagnostic, Index 19

Vue d'ensemble

La Temporisation d'indication des défauts détermine le délai avant exécution des actions sur défaut.

Restriction

La Temporisation d'indication des défauts s'applique uniquement aux alarmes suivantes (indiquées par un code d'alarme d'état) : A003, A004, A005, A008, A016, A017, A033. Pour toutes les autres alarmes, les actions sur défaut sont exécutées dès que l'alarme est détectée.

Procédure

Réglez le paramètre Temporisation d'indication des défauts sur l'option souhaitée.

La valeur par défaut est de 0 seconde. La plage est comprise entre 0 et 60 secondes.

Si vous réglez la Temporisation d'indication des défauts sur 0, les actions sur défaut sont exécutées dès que la condition d'alarme est détectée.

La période de temporisation d'indication sur défaut commence lorsque le transmetteur détecte une condition d'alarme. Le transmetteur continue d'indiquer les dernières valeurs mesurées avant l'apparition du défaut pendant la durée de temporisation programmée.

Si la période de temporisation arrive à expiration alors que l'alarme est toujours active, les actions sur défaut sont exécutées. Si la condition d'alarme disparaît avant l'expiration de la temporisation, aucune action sur défaut n'est exécutée.

Conseil

ProLink II vous permet de régler la Temporisation d'indication des défauts à deux endroits. Cependant, étant donné qu'il n'existe qu'un seul paramètre, celui-ci s'applique à toutes les sorties.

16.1.2 Configurer le Niveau de gravité des alarmes

ProLink II	ProLink > Configuration > Alarm > Alarm	
	ProLink > Configuration > Alarm > Severity	
ProLink III	Device Tools > Configuration > Alert Severity	
PROFIBUS EDD	Configure > Alert Setup > Alert Severity > Change Alert Severity	
PROFIBUS bus pa-	Alarm index: Block: Diagnostic, Index 20	
rameters	Alarm x severity: Block: Diagnostic, Index 21	

Vue d'ensemble

Utilisez Niveau de gravité des alarmes pour déterminer les actions sur défaut exécutées par le transmetteur lorsqu'il détecte une condition d'alarme.

Restrictions

- Pour certaines alarmes, le Niveau de gravité des alarmes n'est pas configurable.
- Pour certaines alarmes, le Niveau de gravité des alarmes peut être configuré sur deux des trois options seulement.

Conseil

Micro Motion recommande l'utilisation des valeurs par défaut de Niveau de gravité des alarmes sauf si vous devez expressément les modifier.

Procédure

- 1. Sélectionnez une alarme d'état.
- 2. Pour l'alarme d'état sélectionnée, réglez le Niveau de gravité des alarmes sur l'option souhaitée.

Op- tion	Description
Défaut	 Actions lorsqu'un défaut est détecté : L'alarme est ajoutée à la liste des alertes. Le dosage est terminé.⁽¹⁾ Les sorties passent à l'action sur défaut configurée (après expiration du délai Tempor. défaut, le cas échéant). La communication numérique passe à l'action sur défaut configurée (après expiration du délai Tempor. défaut, le cas échéant). La DEL d'état (le cas échéant) passe du rouge au jaune (en fonction de la gravité de l'alarme). Actions lorsque l'alarme est supprimée : Les sorties reviennent à un fonctionnement normal. La OEL d'état (le cas échéant) redevient verte et peut clignoter ou non. Le dosage n'est pas repris.⁽¹⁾
Informa- tion	 Actions lorsqu'un défaut est détecté : L'alarme est ajoutée à la liste des alertes. La DEL d'état (le cas échéant) passe du rouge au jaune (en fonction de la gravité de l'alarme). Pour une alarme A105 uniquement (Ecoulement biphasique), le dosage se termine une fois la Durée biphasique écoulée.⁽¹⁾ Actions lorsque l'alarme est supprimée : La DEL d'état (le cas échéant) redevient verte et peut clignoter ou non. Pour une alarme A105 uniquement (Ecoulement biphasique), le dosage n'est pas repris.⁽¹⁾
lgnorer	 Pour une alarme A105 uniquement (Ecoulement biphasique), le dosage se termine une fois la Durée biphasique écoulée, et n'est pas reprise lorsque l'alarme est supprimée.⁽¹⁾ Pour toutes les autres alarmes : Aucune action.

Alarmes d'état et options disponibles pour le paramètre Gravité des alarmes

Tableau 16-1: Alarmes d'état e	et paramètre Gravité des alarmes
--------------------------------	----------------------------------

Code de l'alarme	Message d'état	Niveau de grav- ité par défaut	Remarques	Configurable?
A001	Erreur EEPROM (platine processeur)	Défaut		Non
A002	Erreur RAM (platine proc- esseur)	Défaut		Non
A003	Aucune réponse du cap- teur	Défaut		Oui
A004	Température hors limites	Défaut		Non
A005	Débit massique hors lim- ites	Défaut		Oui

(1) Dosages contrôlés par une vanne intégrée uniquement. Pour les dosages contrôlés par une vanne externe, le traitement est contrôlé par le programme hôte.

Code de l'alarme	Message d'état	Niveau de grav- ité par défaut	Remarques	Configurable ?
A006	Caractérisation requise	Défaut		Oui
A008	Masse volumique hors lim- ites	Défaut		Oui
A009	Initialisation/mise en tem- pérature du transmetteur	Défaut		Oui
A010	Echec de l'étalonnage	Défaut		Non
A011	Echec de l'ajustage du zéro : débit faible	Défaut		Oui
A012	Echec de l'ajustage du zéro : débit excessif	Défaut		Oui
A013	Echec de l'ajustage du zéro : débit instable	Défaut		Oui
A014	Panne du transmetteur	Défaut		Non
A016	Panne de la sonde de tem- pérature	Défaut		Oui
A017	Panne de la sonde de tem- pérature de série T	Défaut		Oui
A020	Aucune valeur d'étalon- nage en débit	Défaut		Oui
A021	Type de capteur incorrect (K1)	Défaut		Non
A029	Défaut de communication PIC/carte fille	Défaut		Non
A030	Type de carte incorrect	Défaut		Non
A031	Tension d'alimentation fai- ble	Défaut		Non
A033	Signal de détecteur droit/ gauche insuffisant	Défaut		Oui
A102	Excitation hors limites	Informationnel		Oui
A104	Etalonnage en cours	Informationnel	Peut être réglé sur Informationnel ou sur Ignorer, mais pas sur Défaut.	Oui
A105	Ecoulement biphasique	Informationnel		Oui
A107	Coupure d'alimentation	Informationnel	Fonctionnement normal du trans- metteur ; se produit après chaque mise hors tension suivie d'une mise sous tension.	Oui
A110	Sortie impulsions saturée	Informationnel	Peut être réglé sur Informationnel ou sur Ignorer, mais pas sur Défaut.	Oui
A111	Sortie impulsions forcée	Informationnel	Peut être réglé sur Informationnel ou sur Ignorer, mais pas sur Défaut.	Oui
A113	Sortie analogique 2 satur- ée	Informationnel	Peut être réglé sur Informationnel ou sur Ignorer, mais pas sur Défaut.	Oui

Tableau 16-1: Alarmes d'état et paramètre Gravité des alarmes (suite)

Code de l'alarme	Message d'état	Niveau de grav- ité par défaut	Remarques	Configurable ?
A114	Sortie analogique 2 forcée	Informationnel	Peut être réglé sur Informationnel ou sur Ignorer, mais pas sur Défaut.	Oui
A118	Sortie TOR 1 forcée	Informationnel	Peut être réglé sur Informationnel ou sur Ignorer, mais pas sur Défaut.	Oui

Tableau 16-1: Alarmes d'état e	paramètre Gravité des alarmes	(suite)
--------------------------------	-------------------------------	---------

16.2 Configurer les paramètres d'informations

Les paramètres d'informations peuvent être utilisés pour identifier ou décrire le débitmètre mais ne sont pas utilisés dans le traitement du transmetteur et ne sont pas obligatoires.

Les paramètres d'informations sont les suivants :

- Paramètres de l'appareil
 - Descripteur
 - Message
 - Date
- Paramètres du capteur
 - Numéro de série du capteur
 - Matériau de construction du capteur
 - Matériau de revêtement interne du capteur
 - Type de bride du capteur

16.2.1 Configurer le Descripteur

ProLink II	ProLink > Configuration > Device > Descriptor
ProLink III	Device Tools > Configuration > Informational Parameters > Transmitter
PROFIBUS EDD	Non disponible
PROFIBUS bus pa- rameters	Non disponible

Vue d'ensemble

Le Descripteur vous permet d'enregistrer une description dans la mémoire du transmetteur. La description n'est pas utilisée pendant le traitement est n'est pas obligatoire.

Procédure

Saisissez une description du transmetteur.

La description peut contenir 16 caractères maximum.

16.2.2 Configurer le Message

ProLink II	ProLink > Configuration > Device > Message
ProLink III	Device Tools > Configuration > Informational Parameters > Transmitter
PROFIBUS EDD	Non disponible
PROFIBUS bus pa- rameters	Non disponible

Vue d'ensemble

Message vous permet d'enregistrer un court message dans la mémoire du transmetteur. Ce paramètre n'est pas utilisé pendant le traitement et n'est pas obligatoire.

Procédure

Saisissez un court message sur le transmetteur.

Le message peut contenir 32 caractères maximum.

16.2.3 Configurer la Date

ProLink II	ProLink > Configuration > Device > Date
ProLink III	Device Tools > Configuration > Informational Parameters > Transmitter
PROFIBUS EDD	Non disponible
PROFIBUS bus pa- rameters	Non disponible

Vue d'ensemble

La Date vous permet d'enregistrer une date statique (non mise à jour par le transmetteur) dans la mémoire du transmetteur. Ce paramètre n'est pas utilisé pendant le traitement et n'est pas obligatoire.

Procédure

Saisissez la date que vous souhaitez utiliser sous la forme mm/jj/aaaa.

Conseil

ProLink II et ProLink III proposent un calendrier vous simplifier le choix de la date.

16.2.4 Configurer le Numéro de série du capteur

ProLink II	ProLink > Configuration > Sensor > Sensor s/n
ProLink III	Device Tools > Configuration > Informational Parameters > Sensor
PROFIBUS EDD	Configure > Manual Setup > Informational Parameters > Sensor Serial Number
PROFIBUS bus pa- rameters	Block: Device Information, Index 6

Vue d'ensemble

Le Numéro de série du capteur vous permet d'enregistrer le numéro de série du capteur de votre débitmètre dans la mémoire du transmetteur. Ce paramètre n'est pas utilisé pendant le traitement et n'est pas obligatoire.

Procédure

- 1. Obtenez le numéro de série du capteur sur le repère du capteur.
- 2. Saisissez le numéro de série dans le champ Numéro de série du capteur.

16.2.5 Configurer le Matériau du capteur

ProLink II	ProLink > Configuration > Sensor > Sensor Matl
ProLink III	Device Tools > Configuration > Informational Parameters > Sensor
PROFIBUS EDD	Configure > Manual Setup > Informational Parameters > Tube Wetted Material
PROFIBUS bus pa-	Block: Device Information, Index 9
rameters	

Vue d'ensemble

Le Matériau du capteur vous permet d'enregistrer le type de matériau utilisé pour les pièces humides du capteur dans la mémoire du transmetteur. Ce paramètre n'est pas utilisé pendant le traitement et n'est pas obligatoire.

Procédure

1. Obtenez le matériau utilisé pour les pièces humides du capteur dans les documents fournis avec le capteur ou à l'aide d'un code dans le numéro de modèle du capteur.

Pour interpréter le numéro de modèle, consultez la fiche technique du capteur.

2. Réglez Matériau du capteur sur l'option appropriée.

16.2.6 Configure le Matériau de revêtement interne du capteur

ProLink II	ProLink > Configuration > Sensor > Liner Matl
ProLink III	Device Tools > Configuration > Informational Parameters > Sensor
PROFIBUS EDD	Configure > Manual Setup > Informational Parameters > Tube Lining
PROFIBUS bus pa- rameters	Block: Device Information, Index 10

Vue d'ensemble

Le Matériau de revêtement interne du capteur vous permet d'enregistrer le type de matériau utilisé pour le revêtement interne du capteur dans la mémoire du transmetteur. Ce paramètre n'est pas utilisé pendant le traitement et n'est pas obligatoire.

Procédure

1. Obtenez le matériau de revêtement interne du capteur dans les documents fournis avec le capteur ou à l'aide d'un code dans le numéro de modèle du capteur.

Pour interpréter le numéro de modèle, consultez la fiche technique du capteur.

2. Réglez Matériau de revêtement interne du capteur sur l'option appropriée.

16.2.7 Configurer le Type de bride du capteur

ProLink II	ProLink > Configuration > Sensor > Flange
ProLink III	Device Tools > Configuration > Informational Parameters > Sensor
PROFIBUS EDD	Configure > Manual Setup > Informational Parameters > Sensor Flange
PROFIBUS bus pa- rameters	Block: Device Information, Index 11

Vue d'ensemble

Le Type de bride du capteur vous permet d'enregistrer le type de bride du capteur dans la mémoire du transmetteur. Ce paramètre n'est pas utilisé pendant le traitement et n'est pas obligatoire.

Procédure

1. Obtenez le type de bride du capteur dans les documents fournis avec le capteur ou à l'aide d'un code dans le numéro de modèle du capteur.

Pour interpréter le numéro de modèle, consultez la fiche technique du capteur.

2. Réglez Type de bride du capteur sur l'option appropriée.

17 Intégration du débitmètre au réseau

Sujets couverts dans ce chapitre:

- Configuration des voies du transmetteur
- Configurer la sortie analogique
- Configurer la sortie impulsions
- Configurer la sortie tout-ou-rien
- Configurer l'entrée TOR
- Configurer un événement avancé
- Configurer la communication numérique

17.1 Configuration des voies du transmetteur

ProLink II	ProLink > Configuration > Channel > Channel B > Type Assignment
ProLink III	Device Tools > Configuration > I/O > Channels
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > Channels
PROFIBUS bus pa- rameters	Block: Filling, Index 83

Vue d'ensemble

Vous pouvez configurer la voie B de votre transmetteur pour fonctionner en tant que sortie impulsions ou entrée TOR. La configuration des voies doit correspondre au câblage des bornes du transmetteur.

Prérequis

Pour éviter de provoquer des erreurs de procédé :

- Configurez les voies avant de configurer les sorties.
- Avant de modifier la configuration d'une voie, assurez-vous que toutes les boucles de régulation affectées par cette voie sont sous contrôle manuel.

ATTENTION !

Avant de configurer une voie pour fonctionner en tant qu'entrée TOR, vérifiez l'état de l'appareil d'entrée distant et les actions affectées à l'entrée TOR. Si l'entrée TOR est activée, toutes les actions affectées à l'entrée TOR seront effectuées lorsque la nouvelle configuration de la voie sera mise en œuvre. Si cela n'est pas acceptable, modifiez l'état de l'appareil distant ou attendez un moment opportun pour configurer la voie en tant qu'entrée TOR.

Procédure

Réglez la voie B de la façon souhaitée.

Option	Description
Sortie TOR	La voie B fonctionnera en tant que sortie TOR.
Entrée TOR	La voie B fonctionnera en tant qu'entrée TOR.

Postrequis

Pour chaque voie que vous avez configurée, effectuez ou vérifiez la configuration d'entrée ou de sortie correspondante. Lorsque la configuration d'une voie est modifiée, le comportement de cette voie est contrôlé par la configuration enregistrée pour le type d'entrée ou de sortie sélectionné, qui peut être adaptée ou non au procédé.

Après avoir vérifié la configuration des voies et des sorties, remettez la boucle de régulation en fonctionnement automatique.

17.2 Configurer la sortie analogique

La sortie analogique sert à transmettre la variable de procédé configurée. Les paramètres de la sortie analogique déterminent comment la variable de procédé est transmise. Le transmetteur dispose d'une sortie analogique.

Les paramètres de la sortie analogique sont les suivants :

- Variable de procédé de sortie analogique
- Valeur basse d'échelle (LRV) et Valeur haute d'échelle (URV)
- Seuil de coupure de la sortie analogique
- Amortissement supplémentaire
- Action sur défaut de la sortie analogique et Niveau de défaut de la sortie analogique

Important

Lors de chaque modification d'un paramètre de sortie analogique, vérifier tous les autres paramètres de la sortie analogique avant la remise en service du débitmètre. Dans certaines situations, le transmetteur charge automatiquement un ensemble de valeurs enregistrées qui peuvent ne pas être appropriées pour l'application considérée.

17.2.1 Configurer la Variable de procédé de sortie analogique

ProLink II	ProLink > Configuration > Analog Output > Secondary Variable
ProLink III	Device Tools > Configuration > I/O > Outputs > mA Output
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > mA Output > Select Primary Variable
PROFIBUS bus pa- rameters	Block: Filling, Index 42

Vue d'ensemble

Utilisez la variable de procédé de sortie analogique pour sélectionner la variable restituée sur la sortie analogique.

Procédure

Réglez Variable de procédé de sortie analogique sur l'option souhaitée.

La valeur par défaut est Débit massique.

Options disponibles pour le paramètre Variable de procédé de sortie analogique

Le transmetteur propose un ensemble d'options standard pour la variable de procédé de sortie analogique, ainsi que plusieurs options spécifiques. Les différents outils de communication peuvent mentionner des intitulés différents pour les options.

Tableau 17-1: Options disponibles pour le paramètre Variable de procédé de sortie analogique

	Intitulé	
Variable de procédé	ProLink II	ProLink III
Débit massique	Débit massique	Débit massique
Débit volumique	Débit volumique	Débit volumique
Température	Température	Température
Masse volumique	Masse volumique	Masse volumique
Pourcentage de dosage livré	Lot tout-ou-rien : % de remplis- sage	Lot tout-ou-rien : % de remplis- sage

17.2.2 Configurer la valeur basse d'échelle (LRV) et la valeur haute d'échelle (URV)

ProLink II	ProLink > Configuration > Analog Output > Lower Range Value
	ProLink > Configuration > Analog Output > Upper Range Value
ProLink III	Device Tools > Configuration > I/O > Outputs > mA Output
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > mA Output
PROFIBUS bus pa-	Lower Range Value: Block: Filling, Index 43
rameters	Upper Range Value: Block: Filling, Index 44

Vue d'ensemble

La valeur basse d'échelle (LRV) et la valeur haute d'échelle (URV) sont utilisées pour régler l'échelle de la sortie analogique, c.-à-d. définir le rapport entre la variable de procédé de sortie analogique et le niveau de la sortie analogique.

Remarque

Si vous modifiez les valeurs LRV et URV d'usine par défaut et que vous modifiez ultérieurement la variable de procédé de sortie analogique, les valeurs LRV et URV par défaut ne sont pas restaurées. Par exemple, si vous réglez Variable de procédé de sortie analogique sur Débit massique et que vous modifiez les valeurs LRV et URV, que vous réglez ensuite la variable de procédé de sortie analogique sur Débit massique sur Density, puis que vous reconfigurez la variable de procédé de sortie analogique sur Débit massique, les valeurs LRV et URV pour Débit massique reprennent les valeurs que vous avez configurées.

Procédure

Configurez LRV et URV de la façon souhaitée.

- LRV définit la valeur de la variable de procédé de sortie analogique représentée par une sortie de 4 mA. La valeur par défaut de LRV dépend du réglage de la variable de procédé de sortie analogique. Si la Variable de procédé de sortie analogique est réglée sur Lot tout-ou-rien : % de dosage, saisissez la valeur LRV en %.
- URV définit la valeur de la variable de procédé de sortie analogique représentée par une sortie de 20 mA. La valeur par défaut de URV dépend du réglage de la Variable de procédé de sortie analogique. Si la Variable de procédé de sortie analogique est réglée sur Lot tout-ou-rien : % de dosage, saisissez la valeur URV en %.

Conseils

Pour de meilleures performances :

- Réglez LRV ≥ LSL (limite inférieure du capteur).
- Réglez URV ≤ USL (limite supérieure du capteur).
- Set these values so that the difference between URV and LRV is ≥ Min Span (minimum span).

Le réglage des valeurs URV et LRV recommandées pour Etendue d'échelle min., LSL et USL garantit que la résolution du signal de sortie analogique est compris dans la plage de prévision du convertisseur numérique/analogique.

Remarque

La valeur URV peut être inférieure à la valeur LRV. Par exemple, vous pouvez réglez URV sur 50 et LRV sur 100.

La sortie analogique utilise la plage 4–20 mA pour représenter la variable de procédé de sortie analogique. Entre les valeurs LRV et URV, la sortie analogique est linéaire avec la variable de procédé. Si la variable de procédé passe en dessous de la valeur LRV ou s'élève au-dessus de la valeur URV, le transmetteur génère une alarme de saturation de la sortie.

Valeurs par défaut de la Valeur basse d'échelle (LRV) et de la Valeur haute d'échelle (URV)

Chaque option de la variable procédé de sortie analogique a ses propres LRV et URV. Si la configuration de la variable procédé de sortie analogique est modifiée, les LRV et URV correspondantes sont chargées et utilisées.

d echelle (UKV)		
Variable de procédé	Point bas d'échelle (LRV)	Point haut d'échelle (URV)
Toutes les variables de débit massique	-200,000 g/sec	200,000 g/sec
Toutes les variables de débit volumique de liquide	–0,200 l/sec	0,200 l/sec
Toutes les variables de masse volumique	0,000 g/cm ³	10,000 g/cm ³
Toutes les variables de tempér- ature	−240,000 °C	450,000 °C

Tableau 17-2: Valeurs par défaut de la Valeur basse d'échelle (LRV) et de la Valeur haute d'échelle (URV)
Tableau 17-2: Valeurs par défaut de la Valeur basse d'échelle (LRV) et de la Valeur haute d'échelle (URV) (suite)

Variable de procédé	Point bas d'échelle (LRV)	Point haut d'échelle (URV)
Pourcentage dosage	0 %	100 %

17.2.3 Configurer le Seuil de coupure de la sortie analogique

ProLink II	ProLink > Configuration > Analog Output > AO Cutoff
ProLink III	Device Tools > Configuration > I/O > Outputs > mA Output
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > mA Output
PROFIBUS bus pa- rameters	Block: Filling, Index 45

Vue d'ensemble

Le seuil de coupure de la sortie analogique représente le débit massique ou volumique le plus bas que puisse indiquer cette sortie. Tout débit inférieur au seuil de coupure de la sortie analogique sera indiqué comme étant nul (0).

Restriction

Le seuil de coupure de la sortie analogique n'est appliqué sur si la variable de procédé de sortie analogique est réglée sur Débit massique ou Débit volumique. Si la variable de procédé de sortie analogique est réglée sur une autre variable, le seuil de coupure de la sortie analogique n'est pas configurable et le transmetteur ne met pas en œuvre la fonction de seuil de coupure de la sortie analogique.

Procédure

Réglez Seuil de coupure de sortie analogique sur la valeur souhaitée.

La valeur par défaut de Seuil de coupure de sortie analogique est de 0,0 g/sec.

Conseil

La valeur par défaut du seuil de coupure de sortie analogique convient à la plupart des applications. Contactez le service client de Micro Motion avant de modifier le seuil de coupure de sortie analogique.

Interaction entre le seuil de coupure de la sortie analogique et le seuil de coupure de la variable procédé

Lorsque la variable procédé de sortie analogique est réglée sur une grandeur de débit (par exemple, débit massique ou débit volumique), le seuil de coupure de la sortie analogique interagit avec le le seuil de coupure de débit massique ou le le seuil de coupure de débit volumique. Le transmetteur active le seuil de coupure à la plus élevée des deux valeurs de seuil de coupure.

Exemple : Interaction avec le seuil de coupure

Configuration :

- Grandeur représentée par la sortie analogique = Débit massique
- Seuil de coupure de la sortie analogique = 10 g/s
- Seuil de coupure du débit massique = 15 g/s

Résultat : si le débit massique tombe en dessous de 15 g/s, la sortie analogique indiquera un débit nul.

17.2.4 Configurer l'Amortissement supplémentaire

ProLink II	ProLink > Configuration > Analog Output > AO Added Damp
ProLink III	Device Tools > Configuration > I/O > Outputs > mA Output
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > mA Output
PROFIBUS bus pa- rameters	Block: Filling, Index 46

Vue d'ensemble

L'L'amortissement permet de lisser les fluctuations faibles et rapides lors des mesures de procédé. Le paramètre Valeur d'amortissement spécifie la période de temps (en secondes) au sein de laquelle le transmetteur étalera les variations dans la grandeur mesurée indiquée. A la fin de l'intervalle, la grandeur mesurée indiquée reflétera 63 % de la variation de la grandeur mesurée réelle. Amortissement supplémentaire détermine le niveau d'amortissement appliqué à la sortie analogique. Il n'affecte que l'indication de la variable de procédé de sortie analogique. Il n'affecte pas l'indication de cette variable de procédé par une autre méthode (par ex. la sortie impulsions ou la communication numérique) ou la variable de procédé utilisée pour les calculs ni sa valeur utilisée dans les calculs internes.

Remarque

L'Amortissement supplémentaire n'est pas appliqué si la sortie analogique est forcée (lors d'un test de boucle, par exemple) ou si la sortie analogique indique la présence d'un défaut. L'Amortissement supplémentaire est appliqué lorsque la simulation du capteur est activée.

Procédure

Réglez Amortissement supplémentaire sur la valeur souhaitée.

La valeur par défaut est de 0,0 seconde.

Lors du réglage de la valeur Amortissement supplémentaire, le transmetteur arrondit automatiquement vers le bas à la valeur valide la plus proche.

Tableau 17-3: Valeurs valides pour Amortissement supplémentaire

Valeurs valides pour Amortissement supplémentaire
0,0, 0,1, 0,3, 0,75, 1,6, 3,3, 6,5, 13,5, 27,5, 55, 110, 220, 440

Interaction entre les paramètres Amortissement supplémentaire et Amortissement de variable de procédé

Lorsque Grandeur représentée par la sortie analogique est défini sur une variable de débit, une masse volumique ou une température, Amortissement supplémentaire interagit avec Amortissement du débit, Amortissement de la masse volumique ou Amortissement de la température. Si plusieurs paramètres d'amortissement sont applicables, l'effet de l'amortissement de la base est d'abord calculé, et l'amortissement supplémentaire y est ajouté.

Exemple : Interaction avec l'amortissement

Configuration :

- Amortissement du débit = 1 s
- Grandeur représentée par la sortie analogique = Débit massique
- Amortissement supplémentaire = 2 s

Résultat : toute variation du débit massique est reflétée sur la sortie analogique sur une période supérieure à 3 secondes. La période exacte est calculée par un algorithme interne au transmetteur et elle n'est pas configurable.

17.2.5 Configurer l'Action sur défaut de la sortie analogique et le Niveau de défaut de la sortie analogique

ProLink II	ProLink > Configuration > Analog Output > AO Fault Action
	ProLink > Configuration > Analog Output > AO Fault Level
ProLink III	Device Tools > Configuration > Fault Processing
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > mA Output
PROFIBUS bus pa-	mA Output Fault Action: Block: Filling, Index 47
rameters	mA Output Fault Level: Block: Filling, Index 48

Vue d'ensemble

L'Action sur défaut de la sortie analogique détermine le comportement de la sortie analogique lorsque le transmetteur détecte un défaut de fonctionnement.

Remarque

Pour certaines erreurs uniquement : si Temporisation dernière valeur mesurée est défini sur une valeur non nulle, le transmetteur ne met pas en œuvre l'action sur défaut tant que la temporisation ne s'est pas écoulée.

Procédure

1. Réglez Action sur défaut de la sortie analogique sur la valeur souhaitée.

La valeur par défaut est Echelle basse.

2. Si vous réglez Action sur défaut de la sortie analogique sur Echelle haute ou Echelle basse, réglez Niveau de défaut de la sortie analogique sur la valeur souhaitée.

Options disponibles pour les paramètres Action sur défaut de la sortie analogique **et** Niveau de défaut de la sortie analogique

Option	Comportement de la sortie analogique	Niveau de défaut de la sortie analogique
Valeur haute	La sortie est forcée au niveau de défaut configuré	Valeur par défaut : 22,0 mA Plage : 21 à 24 mA
Valeur basse (par défaut)	La sortie est forcée au niveau de défaut configuré	Valeur par défaut : 2,0 mA Plage : 1,0 à 3,6 mA
Zéro interne	La sortie est forcée au niveau corre- spondant à une valeur nulle de la variable mesurée, telle que définie par les réglag- es de la valeur basse d'échelle et de la valeur haute d'échelle	Non applicable
Aucun	Recherche les données pour la variable de procédé affectée : aucune action de défaut	Non applicable

 Tableau 17-4:
 Options disponibles pour les paramètres Action sur défaut de la sortie analogique et Niveau de défaut de la sortie analogique

ATTENTION !

Si vous avez paramétré Action sur défaut de la sortie analogique ou Action sur défaut de la sortie impulsions sur Aucune, veillez à paramétrer Action sur défaut des grandeurs transmises par voie numérique sur Aucune. Sinon, la sortie ne représentera pas la valeur réelle de la grandeur mesurée, ce qui risque d'entraîner des erreurs de mesure et d'avoir des conséquences inattendues sur le procédé.

Restriction

Si vous avez paramétré Action sur défaut de communication numérique sur NAN, vous ne pouvez pas paramétrer Action sur défaut de la sortie analogique ou Action sur défaut de la sortie impulsions sur Aucune. Si vous essayez d'utiliser une telle configuration, le transmetteur ne l'acceptera pas.

17.3 Confi

Configurer la sortie impulsions

La sortie impulsions sert à transmettre la valeur d'une valeur de procédé. Les paramètres de la sortie impulsions déterminent comment la variable de procédé est transmise. Si vous avez acheté un transmetteur avec remplissage contrôlé par une vanne externe, il est doté d'une sortie impulsions. Si vous avez acheté un transmetteur avec remplissage contrôlé par une vanne intégrée, il n'est pas doté d'une sortie impulsions.

Les paramètres de la sortie impulsions sont les suivants :

- Polarité de la sortie impulsions
- Mode de réglage de la sortie impulsions
- Largeur maximum de la sortie impulsions
- Action sur défaut de la sortie impulsions et Valeur de défaut de la sortie impulsions

Remarque

La Variable de procédé de la sortie impulsions a été configurée pendant la configuration du remplissage contrôlé par une vanne externe. Si vous la modifiez, vous modifiez la variable de procédé utilisée par l'hôte pour mesurer et contrôler le remplissage.

Important

Lors de chaque modification d'un paramètre de la sortie impulsions, vérifiez tous les autres paramètres de la sortie impulsions avant la remise en service du débitmètre. Dans certaines situations, le transmetteur charge automatiquement un ensemble de valeurs enregistrées qui peuvent ne pas être appropriées pour l'application considérée.

17.3.1 Configurer la Polarité de la sortie impulsions

ProLink II	ProLink > Configuration > Frequency > Freq Output Polarity
ProLink III	Device Tools > Configuration > I/O > Outputs > Frequency Output
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > Frequency Output > Frequency Output Polarity
PROFIBUS bus pa- rameters	Block: Filling, Index 66

Vue d'ensemble

La Polarité de la sortie impulsions détermine si les impulsions correspondent aux niveaux haut ou bas actifs du signal. Le Niveau haut actif (sélectionné par défaut) convient à la plupart des applications. Le Niveau bas actif n'est utilisé qu'avec certains types de compteurs d'impulsions à très basse fréquence.

Procédure

Réglez le paramètre Polarité de la sortie impulsions sur l'option souhaitée.

Le paramètre par défaut est Niveau haut actif.

Options disponibles pour le paramètre Front d'impulsion

Polarité	Tension de référence (OFF)	Tension d'impulsion (ON)
Niveau haut actif	0	Le niveau est fonction de la ten- sion d'alimentation, de la ré- sistance de rappel et de la charge (pour plus de détails, voir le manuel d'installation du transmetteur)
Niveau bas actif	Le niveau est fonction de la ten- sion d'alimentation, de la ré- sistance de rappel et de la charge (pour plus de détails, voir le manuel d'installation du transmetteur)	0

Tableau 17-5: Options disponibles pour le paramètre Front d'impulsion

17.3.2 Configurer le Mode de réglage de la sortie impulsions

ProLink II	ProLink > Configuration > Frequency > Scaling Method
ProLink III	Device Tools > Configuration > I/O > Outputs > Frequency Output
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > Frequency Output
PROFIBUS bus pa- rameters	Block: Filling, Index 58

Vue d'ensemble

Le Mode de réglage de la sortie impulsions définit la relation entre l'impulsion de la sortie et le débit mesuré. Réglez le paramètre Mode de réglage de la sortie impulsions selon les besoins de l'appareil raccordé à la sortie impulsions.

Procédure

1. Réglez le Mode de réglage de la sortie impulsions.

Option	Description
Impulsion = débit (par dé- faut)	Impulsion calculée à partir d'un débit
Impulsions par unité	Le nombre d'impulsions spécifié par l'utilisateur représente une unité de mesure
Unités par impulsion	Le nombre d'unités de mesure spécifié par l'utilisateur repré- sente une impulsion

- 2. Configurez les paramètres supplémentaires requis.
 - Si le Mode de réglage de la sortie impulsions est réglé sur Impulsion = Débit, configurez les paramètres Valeur de débit et Valeur d'impulsion.
 - Si le Mode de réglage de la sortie impulsions est réglé sur Impulsions par unité, définissez le nombre d'impulsions représentant une unité de mesure.
 - Si le Mode de réglage de la sortie impulsions est réglé sur Unités par impulsion, définissez le nombre d'unités de mesure que chaque impulsion représente.

Calculer la fréquence à partir du débit

L'option Fréquence = Débit est utilisée pour personnaliser la sortie impulsions de l'application considérée lorsque les valeurs appropriées de Unités par impulsion ou de Impulsion par unité sont inconnues.

Si vous avez sélectionné Fréquence = Débit, vous devez fournir des valeurs pour les paramètres Valeur débit et Valeur fréquence :

Valeur débit	Débit maximal que la sortie impulsions doit indiquer. Au-delà de ce débit, le transmetteur indiquera A110 : Sortie impulsions saturée.
Valeur	Valeur calculée comme suit :
fréquence	FrequencyFactor = <u>RateFactor</u> x N T

où:

- T Facteur servant à convertir la base de temps en secondes
- **N** Nombre d'impulsions par unité de quantité, tel que configuré dans l'appareil récepteur

Le paramètre Valeur fréquence ainsi calculé doit être compris dans la plage de fréquences de la sortie impulsions (0 à 10 000 Hz) :

- Si le paramètre Valeur fréquence est inférieur à 1 Hz, reconfigurez l'appareil récepteur afin que le nombre d'impulsions par unité de quantité soit plus élevé.
- Si le paramètre Valeur fréquence est supérieur à 10 000 Hz, reconfigurez l'appareil récepteur afin que le nombre d'impulsions par unité de débit soit plus faible.

Conseil

Exemple : Configurer Fréquence = Débit

Vous souhaitez que des débits jusqu'à 2000 kg/min soient indiqués par la sortie impulsions.

L'appareil raccordé à la sortie impulsions est configuré pour que 10 impulsions correspondent à 1 kg.

Solution :

FrequencyFactor =
$$\frac{\text{RateFactor}}{\text{T}}$$
 x N
FrequencyFactor = $\frac{2000}{60}$ x 10
FrequencyFactor = 333.33

Configurez les paramètres comme suit :

- Valeur débit : 2000
- Valeur fréquence : 333,33

17.3.3 Configurer la Largeur maximum de la sortie impulsions

ProLink II	ProLink > Configuration > Frequency > Freq Pulse Width
ProLink III	Device Tools > Configuration > I/O > Outputs > Frequency Output
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > Frequency Output > Maximum Pulse Width
PROFIBUS bus pa- rameters	Block: Filling, Index 61

Si Mode de réglage de la sortie impulsions est réglé sur Fréquence = Débit, et que Largeur maximum d'impulsion est réglé sur une valeur autre que zéro, Micro Motion recommande de régler Valeur fréquence sur une valeur inférieure à 200 Hz.

Vue d'ensemble

La Largeur maximum de la sortie impulsions sert à garantir que la durée du signal de l'état actif est suffisamment élevée pour être détectée par l'appareil raccordé à la sortie impulsions.

Le signal de l'état actif peut être le niveau haut de tension ou 0,0 V, selon la Polarité de la sortie impulsions.

Tableau 17-6:	Interaction de la Largeur maximum de la sortie impulsions et de la Polarité de la
	sortie impulsions

Polarité	Largeur d'impulsion
Niveau haut actif	\longleftrightarrow
Niveau bas actif	\longleftrightarrow

Procédure

Réglez le paramètre Largeur maximum de la sortie impulsions sur l'option souhaitée.

La valeur par défaut est de 277 millisecondes. La Largeur maximum de la sortie impulsions peut être réglée sur 0 ms ou sur une valeur comprise entre 0,5 ms et 277,5 ms. Le transmetteur règle automatiquement la valeur sur la valeur valide la plus proche.

Conseil

Micro Motion recommande de conserver la Largeur maximum de la sortie impulsions par défaut. Veuillez contacter notre Micro Motion service clientèle avant toute modification de la Largeur maximum de la sortie impulsions.

17.3.4 Configurer l'Action sur défaut de la sortie impulsions et le Niveau de défaut de la sortie impulsions

ProLink II	ProLink > Configuration > Frequency > Freq Fault Action	
ProLink III	Device Tools > Configuration > Fault Processing	
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > Frequency Output	
PROFIBUS bus pa- rameters	Block: Filling, Index 64	

Vue d'ensemble

L'Action sur défaut de la sortie impulsions contrôle le comportement de la sortie impulsions lorsque le transmetteur détecte un défaut de fonctionnement.

Remarque

Pour certaines erreurs uniquement : si Temporisation dernière valeur mesurée est défini sur une valeur non nulle, le transmetteur ne met pas en œuvre l'action sur défaut tant que la temporisation ne s'est pas écoulée.

Procédure

1. Réglez le paramètre Action sur défaut de la sortie impulsions sur l'option souhaitée.

La valeur par défaut est Valeur basse (0 Hz).

2. Si vous réglez le paramètre Action sur défaut de la sortie impulsions sur Valeur haute, réglez le Niveau de défaut de la sortie impulsions sur la valeur souhaitée.

La valeur par défaut est de 15000 Hz. La plage est comprise entre 10 et 15000 Hz.

Options disponibles pour le paramètre Action sur défaut de la sortie impulsions

Tableau 17-7: Options disponibles pour le paramètre Action sur défaut de la sortie impulsions

Intitulé	Comportement de la sortie impulsions	
Valeur haute	La sortie est forcée au niveau de la grandeur de la valeur haute configurée : • Plage : 10 Hz à 15 000 Hz • Valeur par défaut : 15 000 Hz	
Valeur basse	0 Hz	
Zéro interne	0 Hz	
Néant (par défaut)	Recherche les données pour la variable de procédé affectée : au- cune action de défaut	

ATTENTION !

Si vous avez paramétré Action sur défaut de la sortie analogique ou Action sur défaut de la sortie impulsions sur Aucune, veillez à paramétrer Action sur défaut des grandeurs transmises par voie numérique sur Aucune. Sinon, la sortie ne représentera pas la valeur réelle de la grandeur mesurée, ce qui risque d'entraîner des erreurs de mesure et d'avoir des conséquences inattendues sur le procédé.

Restriction

Si vous avez paramétré Action sur défaut de communication numérique sur NAN, vous ne pouvez pas paramétrer Action sur défaut de la sortie analogique ou Action sur défaut de la sortie impulsions sur Aucune. Si vous essayez d'utiliser une telle configuration, le transmetteur ne l'acceptera pas.

17.4 Configurer la sortie tout-ou-rien

La sortie tout-ou-rien sert à transmettre les états d'un débitmètre ou d'un procédé spécifique. Les paramètres de sortie tout-ou-rien déterminent l'état transmis et comment il est transmis.

Selon l'option d'achat et la configuration de la voie B, le transmetteur peut être doté d'aucune ou d'une sortie tout-ou-rien.

Les paramètres de la sortie tout-ou-rien sont les suivants :

- Source de la sortie tout-ou-rien
- Polarité de la sortie tout-ou-rien
- Action sur défaut de la sortie tout-ou-rien

Remarque

Des sorties tout-ou-rien de précision ont été configurées pendant la configuration du remplissage.

Important

Lors de chaque modification d'un paramètre de sortie tout-ou-rien, vérifiez tous les autres paramètres de la sortie tout-ou-rien avant la remise en service du débitmètre. Dans certaines situations, le transmetteur charge automatiquement un ensemble de valeurs enregistrées qui peuvent ne pas être appropriées pour l'application considérée.

17.4.1 Configurer la Source de la sortie tout-ou-rien

ProLink II	ProLink > Configuration > Discrete Output > DO1 Assignment	
ProLink III	Device Tools > Configuration > I/O > Outputs > Discrete Output	
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > Discrete Output > Assignment	
PROFIBUS bus pa-	Block: Filling, Index 70	
rameters		

Vue d'ensemble

La Source de la sortie tout-ou-rien détermine l'état du débitmètre ou du procédé transmis par la sortie tout-ou-rien.

Procédure

Réglez le paramètre Source de la sortie tout-ou-rien sur l'option souhaitée.

Options disponibles pour le paramètre Source de sortie TOR

Tableau 17-8:	Options disponible	s pour le paramètre	Source de sortie TOR
---------------	---------------------------	---------------------	----------------------

Option	Intitulé ProLink II	Condition	Tension de sortie TOR
Dosage en cours Batching/Filling in Progress	Dosage en cours (interrup- tions comprises)	0 V	
		Dosage terminé	Spécifique à un site
Vanne de purge	Discrete Batch: Purge Valve	Vanne de purge ouverte	Spécifique à un site

Option	Intitulé ProLink II	Condition	Tension de sortie TOR
		Vanne de purge fermée	0 V
Erreur	Fault Condition Indication Au moins une erreur active		Spécifique à un site
		Aucune erreur active	0 V

Tableau 17-8: Options disponibles pour le paramètre Source de sortie TOR (suite)

Important

Ce tableau suppose que la Polarité des sorties TOR est définie sur Niveau haut actif. Si la Polarité des sorties TOR est définie sur Niveau bas actif, inversez les niveaux.

17.4.2 Configurer la Polarité de la sortie tout-ou-rien

ProLink II	ProLink > Configuration > Discrete Output > DO1 Polarity	
ProLink III	Device Tools > Configuration > I/O > Outputs > Discrete Output	
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > Discrete Output > Polarity	
PROFIBUS bus pa- rameters	Block: Filling, Index 71	

Vue d'ensemble

Les sorties tout-ou-rien ont deux états : ON (active) et OFF (inactive). Deux niveaux de tension différents sont utilisés pour représenter ces états. La Polarité de la sortie tout-ou-rien détermine le niveau de tension représentant chaque état.

Procédure

Réglez le paramètre Polarité de la sortie tout-ou-rien sur l'option souhaitée.

La valeur par défaut est Elevée active.

Options disponibles pour le paramètre Polarité de sortie TOR

Tableau 17-9: Options disponibles pour le paramètre Polarité de sortie TOR

Polarité	Description
Niveau haut actif	 Lorsque la sortie est activée, elle est ramenée à une tension interne de 24 V par l'intermédiaire d'une résistance de rappel interne. Lorsque la sortie est désactivée, elle est ramenée à 0 V.
Niveau bas actif	 Lorsque la sortie est activée, elle est ramenée à 0 V. Lorsque la sortie est désactivée, elle est ramenée à une tension interne de 24 V par l'intermédiaire d'une résistance de rappel interne.

17.4.3 Configurer l'Action sur défaut de la sortie tout-ou-rien

ProLink II	ProLink > Configuration > Discrete Output > DO1 Fault Action	
ProLink III	Device Tools > Configuration > Fault Processing	
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > Discrete Output > Fault Action	
PROFIBUS bus pa- rameters	Block: Filling, Index 72	

Vue d'ensemble

L'Action sur défaut de la sortie tout-ou-rien détermine le comportement de la sortie tout-ou-rien lorsque le transmetteur détecte un défaut de fonctionnement.

Remarque

Pour certaines erreurs uniquement : si Temporisation dernière valeur mesurée est défini sur une valeur non nulle, le transmetteur ne met pas en œuvre l'action sur défaut tant que la temporisation ne s'est pas écoulée.

ATTENTION !

N'utilisez pas l'Action sur défaut de la sortie tout-ou-rien comme indicateur de défaut. Ceci peut vous empêcher de distinguer un défaut d'un fonctionnement normal. Si vous souhaitez utiliser la sortie tout-ou-rien comme indicateur d'un défaut, voir *Indication des défauts avec la sortie TOR*.

Procédure

Réglez le paramètre Action sur défaut de la sortie tout-ou-rien sur l'option souhaitée.

La valeur par défaut est Aucune.

Options disponibles pour le paramètre Action sur défaut de la sortie TOR

	Comportement de la sortie TOR		
Intitulé	Polarité = Niveau haut actif	Polarité = Niveau bas actif	
Valeur haute	 Erreur : la sortie TOR est activée (tension externe) Pas d'erreur : la sortie TOR est contrôlée par son affectation 	 Erreur : la sortie TOR est désactivée (0 V) Pas d'erreur : la sortie TOR est contrôlée par son affectation 	
Valeur basse	 Erreur : la sortie TOR est désactivée (0 V) Pas d'erreur : la sortie TOR est contrôlée par son affectation 	 Erreur : la sortie TOR est activée (tension externe) Pas d'erreur : la sortie TOR est contrôlée par son affectation 	
Néant (par défaut)	La sortie TOR est contrôlée par son affectation		

Tableau 17-10: Options disponibles pour le paramètre Action sur défaut de la sortie TOR

Indication des défauts avec la sortie TOR

Pour indiquer la présence d'un défaut par l'intermédiaire de la sortie TOR, réglez les paramètres comme suit :

- Origine de la sortie TOR = Défaut
- Action sur défaut de la sortie TOR = Néant

Remarque

Si Origine de la sortie TOR est défini sur Défaut et qu'un défaut survient, la sortie TOR est toujours activée. Le réglage de Action sur défaut de la sortie TOR est ignoré.

17.5 Configurer l'entrée TOR

L'entrée tout-ou-rien permet de commander une ou plusieurs actions du transmetteur à distance. Votre transmetteur peut être doté d'aucune ou d'une entrée tout-ou-rien, selon la configuration du Canal B.

Les paramètres de l'entrée tout-ou-rien sont les suivants :

- Action de l'entrée TOR
- Polarité de l'entrée TOR

Important

Lors de chaque modification d'un paramètre d'entrée TOR, vérifier tous les autres paramètres de l'entrée TOR avant la remise en service du débitmètre. Dans certaines situations, le transmetteur charge automatiquement des valeurs enregistrées qui peuvent ne pas être appropriées pour l'application considérée.

17.5.1 Configurer l'Action de l'entrée tout-ou-rien

ProLink > Configuration > Discrete Input > Assignment > Reset Mass Total
ProLink > Configuration > Discrete Input > Assignment > Reset Volume Total
ProLink > Configuration > Discrete Input > Assignment > Reset All Totals
ProLink > Configuration > Discrete Input > Assignment > Begin Fill
ProLink > Configuration > Discrete Input > Assignment > End Fill
ProLink > Configuration > Discrete Input > Assignment > Pause Fill
ProLink > Configuration > Discrete Input > Assignment > Resume Fill
Device Tools > Configuration > I/O > Action Assignment
Configure > Manual Setup > Inputs/Outputs > Discrete Input > Reset Mass Total
Configure > Manual Setup > Inputs/Outputs > Discrete Input > Reset Volume Total
Configure > Manual Setup > Inputs/Outputs > Discrete Input > Reset All Totals
Configure > Manual Setup > Inputs/Outputs > Discrete Input > Begin Fill
Configure > Manual Setup > Inputs/Outputs > Discrete Input > End Fill
Configure > Manual Setup > Inputs/Outputs > Discrete Input > Pause Fill
Configure > Manual Setup > Inputs/Outputs > Discrete Input > Resume Fill
Reset mass total: Block: Filling, Index 79
Reset volume total: Block: Filling, Index 80
Reset all totals: Block: Filling, Index 81
Begin filling: Block: Filling, Index 75
End filling: Block: Filling, Index 76
Pause filling: Block: Filling, Index 77
Resume filling: Block: Filling, Index 78

Vue d'ensemble

L'action de l'entrée TOR contrôle la ou les actions que le transmetteur effectue lorsque l'entrée TOR passe de mode désactivé au mode activé.

ATTENTION !

Avant d'affecter des actions à un événement avancé ou à une sortie TOR, vérifiez l'état de l'événement ou du dispositif à distance raccordé. S'il est activé, toutes les actions affectées seront effectuées lorsque la nouvelle configuration sera mise en œuvre. Si ce n'est pas acceptable, attendez un moment opportun pour affecter des actions à l'événement ou à l'entrée TOR.

Procédure

- 1. Sélectionnez une action.
- 2. Sélectionnez l'entrée TOR qui réalisera l'action sélectionnée.
- 3. Répétez jusqu'à ce que vous ayez assigné à l'entrée TOR toutes les actions à effectuer.

Options disponibles pour le paramètre Action de l'entrée TOR

	Intitulé	
Action	ProLink II	ProLink III
Néant (par défaut)	Néant	Néant
Réinitialisation du total de la masse	RAZ du totalisateur partiel en masse	RAZ du totalisateur partiel en masse
Remise à zéro du total du volume	RAZ du totalisateur partiel en volume	RAZ du totalisateur partiel en volume
R.A.Z. de tous les totaux	R.A.Z. de tous les totaux	R.A.Z. de tous les totaux
Démarrage du dosage	Démarrage du dosage	Démarrage du dosage
Arrêt du dosage	Arrêt du dosage	Arrêt du dosage
Redémarrage du dosage	Redémarrage du dosage	Redémarrage du dosage
Interruption du dosage	Interruption du dosage	Interruption du dosage

 Tableau 17-11: Options pour Action d'entrée TOR ou Action d'événement avancé

ATTENTION !

Avant d'affecter des actions à un événement avancé ou à une sortie TOR, vérifiez l'état de l'événement ou du dispositif à distance raccordé. S'il est activé, toutes les actions affectées seront effectuées lorsque la nouvelle configuration sera mise en œuvre. Si ce n'est pas acceptable, attendez un moment opportun pour affecter des actions à l'événement ou à l'entrée TOR.

17.5.2 Configurer la Polarité de l'entrée tout-ou-rien

ProLink II	ProLink > Configuration > Discrete Input > Polarity
ProLink III	Device Tools > Configuration > I/O > Inputs > Discrete Input
PROFIBUS EDD	Configure > Manual Setup > Inputs/Outputs > Discrete Input > DI1 Polarity
PROFIBUS bus pa-	Block: Filling, Index 82
rameters	

Vue d'ensemble

L'entrée TOR a deux états : ON et OFF. La Polarité de l'entrée TOR contrôle de quelle façon le transmetteur fait correspondre le niveau de tension d'entrée avec les états ON et OFF.

Procédure

Réglez la Polarité d'entrée TOR sur l'option souhaitée.

Le paramètre par défaut est Niveau bas actif.

Options disponibles pour le paramètre Polarité d'entrée TOR

Tableau 17-12: Options disponibles pour le paramètre Polarité d'entrée TOR

Polarité	Tension	État de l'entrée TOR au niveau du trans- metteur
Niveau haut actif	La tension appliquée entre les bornes est com- prise entre 3 et 30 VDC	Marche
	La tension appliquée entre les bornes est <0,8 VDC	Arrêt
Niveau bas actif	La tension appliquée entre les bornes est <0,8 VDC	Marche
	La tension appliquée entre les bornes est com- prise entre 3 et 30 VDC	Arrêt

17.6 Configurer un événement avancé

ProLink II	ProLink > Configuration > Discrete Events > Event Name
	ProLink > Configuration > Discrete Events > Event Type
	ProLink > Configuration > Discrete Events > Process Variable
	ProLink > Configuration > Discrete Events > Low Setpoint
	ProLink > Configuration > Discrete Events > High Setpoint
ProLink III	Device Tools > Configuration > Events > Enhanced Events
PROFIBUS EDD	Configure > Alert Setup > Discrete Events > Setup Event Trigger > Discrete Event x > Variable
	Configure > Alert Setup > Discrete Events > Setup Event Trigger > Discrete Event x > Event Type
	Configure > Alert Setup > Discrete Events > Setup Event Trigger > Discrete Event x > Setpoint A
	Configure > Alert Setup > Discrete Events > Setup Event Trigger > Discrete Event x > Setpoint B
PROFIBUS bus pa-	Event index (x = 0, 1, 2, 3, 4): Block: Diagnostics, Index 4
rameters	Event x type: Block: Diagnostics, Index 5
	Process variable: Block: Diagnostics, Index 8
	Setpoint A: Block: Diagnostics, Index 6
	Setpoint B: Block: Diagnostics, Index 7

Vue d'ensemble

Un événement avancé est utilisé pour notifier des modifications du procédé ou, éventuellement, pour effectuer des actions spécifiques du transmetteur si l'événement se produit. Un événement avancé se produit (est activé) lorsque la valeur instantanée d'une variable de procédé définie par l'utilisateur franchit un seuil (haut ou bas) prédéterminé ou s'inscrit dans la plage ou hors de la plage par rapport à deux seuils prédéterminés. Jusqu'à cinq événements avancés différents peuvent être configurés. Pour chaque événement avancé, une ou plusieurs actions à effectuer lors de la survenue de l'événement avancé peuvent être affectées au transmetteur.

Procédure

- 1. Sélectionnez l'événement que vous souhaitez configurer.
- 2. Spécifiez le Type d'événement.

Options	Description
н	x > A L'événement se produit lorsque la valeur de la variable de procédé affect-
10	ee (x) est superieure au seuii (Seuii A), extremite non comprise.
10	L'événement se produit lorsque la valeur de la variable de procédé affect- ée (x) est inférieure au seuil (Seuil A), extrémité non comprise.
IN	$A \le x \le B$ L'événement se produit lorsque la valeur de la variable de procédé affect- ée (x) est comprise "dans la plage," à savoir entre Seuil A et Seuil B, ex- trémités comprises.
OUT	x ≤ A ou x ≥ B L'événement se produit lorsque la variable de procédé affectée (x) est "en dehors de la plage," à savoir inférieure à Sœuil A ou supérieure à Sœuil B, extrémités comprises.

- 3. Affectez une variable de procédé à l'événement.
- 4. Définissez les valeurs des seuils requis.
 - Pour les événements HI et LO, définissez Seuil A.
 - Pour les événements IN et OUT, définissez Seuil A et Seuil B.
- 5. Configurez un sortie tout-ou-rien pour changer d'état selon l'événement (en option).
- 6. Spécifiez la ou les actions que le transmetteur doit effectuer lorsque l'événement se produit (en option).
 - Avec ProLink II : ProLink > Configuration > Entrée tout-ou-rien
 - Avec ProLink III : Device Tools > Configuration > I/O > Action Assignment
 - Avec PROFIBUS EDD : Configurer > Configuration des alertes > Evénements tout-ou-rien > Affecter une action tout-ou-rien
 - Avec les paramètres de bus PROFIBUS : Bloc de diagnostic, Index 4 et 5.

17.6.1 Options disponibles pour le paramètre Action de l'événement avancé

Tableau 17-13: Options pour Action d'entrée TOR ou Action d'événement avancé

	Intitulé	
Action	ProLink II	ProLink III
Néant (par défaut)	Néant	Néant
Réinitialisation du total de la masse	RAZ du totalisateur partiel en masse	RAZ du totalisateur partiel en masse

	Intitulé	
Action	ProLink II	ProLink III
Remise à zéro du total du volume	RAZ du totalisateur partiel en volume	RAZ du totalisateur partiel en volume
R.A.Z. de tous les totaux	R.A.Z. de tous les totaux	R.A.Z. de tous les totaux
Démarrage du dosage	Démarrage du dosage	Démarrage du dosage
Arrêt du dosage	Arrêt du dosage	Arrêt du dosage
Redémarrage du dosage	Redémarrage du dosage	Redémarrage du dosage
Interruption du dosage	Interruption du dosage	Interruption du dosage

Tableau 17-13: Options pour Action d'entrée TOR ou Action d'événement avancé (suite)

ATTENTION !

Avant d'affecter des actions à un événement avancé ou à une sortie TOR, vérifiez l'état de l'événement ou du dispositif à distance raccordé. S'il est activé, toutes les actions affectées seront effectuées lorsque la nouvelle configuration sera mise en œuvre. Si ce n'est pas acceptable, attendez un moment opportun pour affecter des actions à l'événement ou à l'entrée TOR.

17.7 Configurer la communication numérique

Les paramètres de communication numérique déterminent comment le transmetteur communique avec les appareils externes.

Le transmetteur est compatible avec les types de communications numériques suivants :

- Modbus/RS-485 sur les bornes RS-485
- Modbus RTU via the port service

Remarque

Le port service réagit automatiquement à une large gamme de demandes de connexion. Il n'est pas configurable.

17.7.1 Configurer l'Action sur défaut des valeurs transmises par communication numérique

ProLink II	ProLink > Configuration > Digital Comm Settings > Digital Comm Fault Setting
ProLink III	Device Tools > Configuration > Fault Processing
PROFIBUS EDD	Configure > Alert Setup > Inputs/Outputs Fault Actions > Digital Communications > Fault Action
PROFIBUS bus pa- rameters	Block: Diagnostics, Index 18

Vue d'ensemble

L'Action sur défaut des valeurs transmises par communication numérique spécifie les valeurs qui seront transmises par communication numérique lorsque le transmetteur détecte un défaut de fonctionnement.

Procédure

Réglez le paramètre Action sur défaut des valeurs transmises par communication numérique sur l'option souhaitée.

La valeur par défaut est Aucune.

Options disponibles pour le paramètre Action sur défaut de communication numérique

 Tableau 17-14:
 Options disponibles pour le paramètre Action sur défaut de communication numérique

Intitulé		
ProLink II	ProLink III	Description
Valeur haute	Upscale	 La valeur des variables de procédé mesurées indique que la valeur est forcée au-dessus de la portée limite supérieure du capteur. Les totalisations sont bloquées.
Valeur basse	Downscale	 La valeur des variables de procédé mesurées indique que la valeur est forcée au-dessus de la portée limite supérieure du capteur. Les totalisations sont bloquées.
Ajustage du zéro	Zero	 Les variables de débit sont forcées à la valeur qui représente un débit nul. Les indications de densité sont forcées à 0. La température est forcée à 0 °C, ou son équivalent si d'autres unités sont utilisées (par ex. 32 °F). Le niveau d'excitation continue d'être transmis tel qu'il est mesuré. Les totalisations sont bloquées.
Pas-un-nombre (NAN)	Not a Number	 Les variables de procédé sont forcées à la valeur IEEE NAN. Le niveau d'excitation continue d'être transmis tel qu'il est mesuré. Les « scaled integers » Modbus indiquent Max Int. Les totalisations sont bloquées.
Débit nul	Flow to Zero	 Les indications de débit sont forcées à 0. Les autres variables de procédé mesurées continuent d'être transmises telles qu'elles sont mesurées. Les totalisations sont bloquées.
Néant (par défaut)	None	 Toutes les variables de procédé mesurées continuent d'être transmises telles qu'elles sont mesurées. Les totalisations sont incrémentées si elles sont ac- tivées.

ATTENTION !

Si vous avez paramétré Action sur défaut de la sortie analogique ou Action sur défaut de la sortie impulsions sur Aucune, veillez à paramétrer Action sur défaut des grandeurs transmises par voie numérique sur Aucune. Sinon, la sortie ne représentera pas la valeur réelle de la grandeur mesurée, ce qui risque d'entraîner des erreurs de mesure et d'avoir des conséquences inattendues sur le procédé.

Restriction

Si vous avez paramétré Action sur défaut de communication numérique sur NAN, vous ne pouvez pas paramétrer Action sur défaut de la sortie analogique ou Action sur défaut de la sortie impulsions sur Aucune. Si vous essayez d'utiliser une telle configuration, le transmetteur ne l'acceptera pas.

Partie V Utilisations, maintenance et dépannage

Chapitres inclus dans cette partie:

- Exploitation du transmetteur
- Prise en charge des mesures
- Dépannage

18 Exploitation du transmetteur

Sujets couverts dans ce chapitre:

- Relever les variables de procédé
- Afficher les variables de procédé
- Afficher et acquitter des alarmes d'état
- Lire les valeurs de totalisateur et de total général
- Démarrer et arrêter des totalisateurs et totaux généraux
- Remettre à zéro les totalisateurs
- Remettre à zéro les totaux généraux

18.1 Relever les variables de procédé

Micro Motion suggère d'effectuer un enregistrement des mesures de variable de procédé spécifiques, notamment la plage de mesure admissible dans des conditions d'utilisation normales. Ces données vous aideront à déterminer lorsque les variables de procédé sont généralement hautes ou basse, et peuvent vous aider à mieux diagnostiquer et identifier les dysfonctionnements de l'application.

Procédure

Relevez les variables de procédé suivantes dans des conditions d'utilisation normales :

	Mesure		
Variable de procédé	Valeur moyenne type	Valeur haute type	Valeur basse type
Débit			
Densité			
Température			
Fréquence de vibration des tubes			
Niveau de détection			
Niveau d'excitation			

18.2 Afficher les variables de procédé

ProLink II	ProLink > Process Variables
ProLink III	Affichez la variable souhaitée sur l'écran principal sous Variables de procédé. Voir <i>Section 18.2.1</i> pour plus d'informations.
PROFIBUS EDD	Service Tools > Variables > Process Variables
PROFIBUS bus pa-	Mass flow rate: Block: Measurement, Index 4
rameters	Volume flow rate: Block: Measurement, Index 10
	Density: Block: Measurement, Index 8
	Temperature: Block: Measurement, Index 6
	Tube frequency: Block: Diagnostics, Index 33
	Left pickoff voltage: Block: Diagnostics, Index 35
	Right pickoff voltage: Block: Diagnostics, Index 36
	Drive gain: Block: Diagnostics, Index 32

Vue d'ensemble

Les variables de procédé fournissent des informations sur l'état du fluide de procédé tel que le débit, la densité et la température, ainsi que les totaux d'exécution. Les variables de procédé peuvent également fournir des données sur l'opération du débitmètre telle que le niveau d'excitation et la tension de détection. Ces informations permettent de mieux comprendre et de diagnostiquer le procédé.

18.2.1 Afficher les variables de procédé à l'aide de ProLink III

Lorsque vous vous connectez à un appareil, les variables de procédé sont affichées sur l'écran principal de ProLink III.

Procédure

Affichez la ou les variables de procédé souhaitées.

Conseil

ProLink III vous permet de choisir les variables de procédé affichées sur l'écran principal. Vous pouvez également choisir d'afficher des données dans la vue Section analogique ou vue numérique, et vous pouvez personnaliser les paramètres de la section. Pour plus d'informations, voir le manuel de l'utilisateur de ProLink III.

18.3 Afficher et acquitter des alarmes d'état

Le transmetteur génère une alarme d'état dès qu'une variable de procédé dépasse une des limites définies ou dès qu'un défaut est détecté. Vous pouvez afficher les alarmes actives et acquitter des alarmes.

18.3.1 Afficher et acquitter des alarmes à l'aide de ProLink II

Vous pouvez afficher une liste répertoriant toutes les alarmes qui sont actives, ou inactives mais qui n'ont pas été acquittées.

- 1. Choisissez ProLink > Journal des alarmes.
- 2. Choisissez le panneau Priorité haute ou Priorité basse.

Remarque

Le regroupement des alarmes dans ces deux catégories est codé et non affecté par la Gravité de l'état d'alarme.

Toutes les alarmes actives ou non acquittées sont répertoriées :

- Indicateur rouge : l'alarme est active.
- Indicateur vert : l'alarme est inactive et non acquittée.

Remarque

Seules les alarmes de types Défaut et Informationnel apparaissent dans cette liste. Le transmetteur omet automatiquement les alarmes pour lesquelles l'option Gravité des alarmes est paramétrée sur Ignorer.

3. Pour acquitter une alarme, cochez la case Acquit correspondante.

Postrequis

- Pour annuler les alarmes suivantes, vous devez corriger le problème, acquitter l'alarme, et mettre le transmetteur hors tension, puis sous tension : A001, A002, A010, A011, A012, A013, A018, A019, A022, A023, A024, A025, A028, A029, A031.
- Pour toutes les autres alarmes :
 - Si l'alarme est inactive au moment où elle est acquittée, elle disparaît de la liste.
 - Si l'alarme est active au moment où elle est acquittée, elle disparaît de la liste lorsque la condition d'alame disparaît elle aussi.

18.3.2 Afficher et acquitter des alertes à l'aide de ProLink III

Vous pouvez afficher une liste répertoriant toutes les alertes qui sont actives, ou inactives et qui n'ont pas été acquittées. Cette liste vous permet d'acquitter des alertes spécifiques ou d'acquitter toutes les alertes simultanément.

1. Affichez les alertes sur l'écran principal de ProLink III sous Alertes.

Toutes les alarmes actives ou non acquittées sont répertoriées et affichées selon les catégories suivantes :

Catégorie	Description
Echec : corriger maintenant	Un débitmètre a rencontré une erreur qui doit être corrigée immédiatement.
Maintenance : corriger sous peu	Un problème pouvant être corrigé ultérieurement s'est pro- duit.
Conseil : informations	Un problème ne nécessitant aucune maintenance s'est pro- duit.

Remarques

Toutes les alertes de défaut sont affichées dans la catégorie Echec : corriger maintenant.

- Toutes les alertes d'information sont affichées dans la catégorie Maintenance : corriger sous peu ou la catégorie Conseil : informations. L'affectation de la catégorie est codée.
- Le transmetteur omet automatiquement les alertes pour lesquelles l'option Gravité de l'alerte est paramétrée sur Ignorer.
- 2. Pour acquitter une alerte, cochez la case Acquitt de l'alerte. Pour acquitter toutes les alertes simultanément, cliquez sur Acquitt tout.

Postrequis

- Pour annuler les alarmes suivantes, vous devez corriger le problème, acquitter l'alarme, et mettre le transmetteur hors tension, puis sous tension : A001, A002, A010, A011, A012, A013, A018, A019, A022, A023, A024, A025, A028, A029, A031.
- Pour toutes les autres alarmes :
 - Si l'alarme est inactive au moment où elle est acquittée, elle disparaît de la liste.
 - Si l'alarme est active au moment où elle est acquittée, elle disparaît de la liste lorsque la condition d'alame disparaît elle aussi.

18.3.3 Afficher et acquitter des alarmes à l'aide de PROFIBUS EDD

Vous pouvez afficher toutes les alarmes actives, acquitter toutes les alarmes actives et afficher des informations détaillées sur chaque alarme active.

1. Choisissez Outils de service > Alertes.

La liste de toutes les alarmes actives s'affiche.

2. Pour acquitter toutes les alarmes actives, cliquez sur Acquitter toutes les alertes.

Une alarme reste affichée dans la liste tant que la condition d'alarme n'est pas supprimée.

3. Pour afficher des informations plus détaillées sur une alarme, cliquez sur son bouton.

18.3.4 Vérifier l'état de l'alarme et acquitter les alarmes à l'aide des paramètres de bus PROFIBUS

Vous pouvez vérifier l'état d'une alarme et l'acquitter. Vous pouvez acquitter toutes les alarmes actives et obtenir des informations de diagnostic plus détaillées.

- Pour vérifier l'état d'une alarme :
 - 1. Ecrivez l'index de l'alarme dans le bloc de diagnostic, index 20.
 - 2. Lisez la valeur du bloc de diagnostic, index 22.
- Pour acquitter une alarme :
 - 1. Ecrivez l'index de l'alarme dans le bloc de diagnostic, index 20.
 - 2. Ecrivez 0 dans le bloc de diagnostic, index 22.
- Pour acquitter toutes les alarmes, écrivez 1 dans le bloc de diagnostic, index 30.
- Pour obtenir des informations plus détaillées sur l'alarme, lisez les données supplémentaires du bloc de diagnostic, notamment son état.

18.3.5 Données d'alarme dans la mémoire du transmetteur

Le transmetteur gère trois structures de données pour chaque alarme générée

Pour chaque occurrence d'alarme, trois structures d'alarmes sont gérées dans la mémoire du transmetteur

- Liste d'alertes
- Statistiques d'alertes
- Alertes récentes

Tableau 18-1: Données d'alarme dans la mémoire du transmetteur

Structure de don-	Action du transmetteur lorsque la condition d'alarme se produit		
nées d'alarme	Contenu	Suppression	
Liste d'alertes	 En fonction des bits d'état d'alarme, liste de : Toutes les alarmes actuellement actives Toutes les alarmes actives précédemment qui n'ont pas été acquittées 	Cette liste est supprimée et régénérée à cha- que remise sous tension du transmetteur.	
Statistiques d'alertes	 Un historique pour chaque alarme (par numéro d'alarme) qui s'est produite depuis la dernière remise à zéro générale. Pour chaque alarme, l'historique enregistre les données suivantes : Le nombre d'occurrences La date et l'heure de la dernière alarme et de la dernière suppression 	Cette liste n'est pas supprimée ; elle est con- servée en cas de remise sous tension du trans- metteur	
Alertes récentes	50 dernières alarmes générées ou supprimées	Cette liste n'est pas supprimée ; elle est con- servée en cas de remise sous tension du trans- metteur	

18.4 Lire les valeurs de totalisateur et de total général

ProLink II	ProLink > Totalizer Control	
ProLink III	Affichez la variable souhaitée sur l'écran principal sous Variables de procédé.	
PROFIBUS EDD	Overview > Totalizer Control	
PROFIBUS bus pa-	Mass totalizer: Block: Measurement, Index 27	
rameters	Volume totalizer: Block: Measurement, Index 28	
	Mass inventory: Block: Measurement, Index 29	
	Volume inventory: Block: Measurement, Index 30	

Vue d'ensemble

Les totalisateurs totalisent les quantités en masse et en volume mesurées par le transmetteur depuis la dernière remise à zéro du totalisateur. Les totaux généraux totalisent les quantités en masse et en volume mesurées par le transmetteur depuis la dernière remise à zéro du total général.

Conseil

Vous pouvez utiliser les totaux généraux pour cumuler plusieurs quantités de masse ou de volume lorsque plusieurs totalisateurs doivent être remis à zéro.

18.5

Démarrer et arrêter des totalisateurs et totaux généraux

ProLink II	ProLink > Totalizer Control > Start
	ProLink > Totalizer Control > Stop
ProLink III	Device Tools > Totalizer Control > Totalizer and Inventories > Start All Totals
	Device Tools > Totalizer Control > Totalizer and Inventories > Stop All Totals
PROFIBUS EDD	Overview > Totalizer Control > Start
	Overview > Totalizer Control > Stop
PROFIBUS bus pa-	Block: Measurement, Index 22
rameters	

Vue d'ensemble

Lorsque vous démarrez un totalisateur, il suit la mesure de procédé. Dans une application type, sa valeur augmente en fonction du débit. Lorsque vous arrêtez un totalisateur, il arrête le suit de la mesure de procédé et sa valeur ne change pas en fonction du débit. Les totaux généraux sont arrêtés et démarrés automatiquement lorsque les totalisateurs sont arrêtés et démarrés.

Important

Les totalisateurs et totaux généraux sont démarrés ou arrêtés ensembles. Lorsque vous démarrez un totalisateur, tous les autres totalisateurs et totaux généraux sont démarrés simultanément. Lorsque vous arrêtez un totalisateur, tous les autres totalisateurs et totaux généraux sont arrêtés simultanément. Vous ne pouvez pas démarrer ou arrêter directement des totaux généraux.

18.6 Remettre à zéro les totalisateurs

ProLink II	ProLink > Totalizer Control > Reset Mass Total
	ProLink > Totalizer Control > Reset All Totals
ProLink III	Device Tools > Totalizer Control > Totalizer and Inventories > Reset Mass Total
	Device Tools > Totalizer Control > Totalizer and Inventories > Reset Volume Total
	Device Tools > Totalizer Control > Totalizer and Inventories > Reset All Totals
PROFIBUS EDD	Overview > Totalizer Control > Mass: Reset Total
	Overview > Totalizer Control > Volume: Reset Total
	Overview > Totalizer Control > Reset All
PROFIBUS bus pa-	Reset mass totalizer: Block: Measurement, Index 25
rameters	Reset volume totalizer: Block: Measurement, Index 26
	Reset all totalizers: Block: Measurement, Index 23

Vue d'ensemble

Lorsque vous remettez à zéro un totalisateur, le transmetteur définit sa valeur sur 0. Il importe peu que le totalisateur soit démarré ou arrêté. Si le totalisateur est démarré, il poursuit la mesure de procédé.

Conseil

Lorsque vous remettez à zéro un seul totalisateur, les valeurs des autres totalisateur ne sont pas remises à zéro. Les valeurs de total général ne sont pas remises à zéro.

18.7 Remettre à zéro les totaux généraux

ProLink II	ProLink > Commande du totalisateur > RAZ des totaux généraux
	ProLink > Commande du totalisateur > RAZ du total général en masse
	ProLink > Commande du totalisateur > RAZ du total général en volume
ProLink III	Device Tools > Totalizer Control > Totalizer and Inventories > Reset Mass Inventory
	Device Tools > Totalizer Control > Totalizer and Inventories > Reset Volume Inventory
	Device Tools > Totalizer Control > Totalizer and Inventories > Reset Gas Inventory
	Device Tools > Totalizer Control > Totalizer and Inventories > Reset All Inventories
PROFIBUS EDD	Non disponible
PROFIBUS bus pa-	Reset mass inventory: Block: Measurement, Index 33
rameters	Reset volume inventory: Block: Measurement, Index 34
	Reset all inventories: Block: Measurement, Index 24

Vue d'ensemble

Lorsque vous remettez à zéro un total général, le transmetteur définit sa valeur sur 0. Il importe peu que le total général soit démarré ou arrêté. Si le total général est démarré, il poursuit la mesure de procédé.

Conseil

Lorsque vous remettez à zéro un seul total général, les valeurs des autres totaux généraux ne sont pas remises à zéro. Les valeurs de totalisateur ne sont pas remises à zéro.

Prérequis

Pour utiliser ProLink II ou ProLink III pour remettre à zéro les totaux généraux, la fonction doit être activée.

- Pour autoriser la remise à zéro du total général dans ProLink II :
 - 1. Cliquez sur Affichage > Préférences.
 - 2. Cochez la case Activer la RAZ des totaux généraux.
 - 3. Cliquez sur Appliquer.
- Pour autoriser la remise à zéro du total général dans ProLink III :
 - 1. Sélectionnez Outils > Options.
 - 2. Sélectionnez RAZ les totaux généraux à partir de ProLink III.

19 Prise en charge des mesures

Sujets couverts dans ce chapitre:

- Ajustage du zéro
- Vérifier le débitmètre
- Effectuer un étalonnage en masse volumique des fluides D1 et D2 (standard)
- Effectuer un étalonnage en température

19.1 Ajustage du zéro

L'ajustage du zéro du débitmètre définit une référence pour la mesure de procédé en analysant la sortie du capteur lorsque le débit qui traverse les tubes du capteur est nul.

Important

Dans la plupart des cas, l'ajustage du zéro en usine est plus précis que l'ajustage du zéro sur site. N'ajustez le zéro du débitmètre que si l'une des conditions suivantes est remplie :

- L'ajustage du zéro est requis par les procédures du site.
- La valeur du zéro enregistrée entraîne un échec de la procédure de vérification de l'ajustage du zéro.

19.1.1 Ajustage du zéro à l'aide e ProLink II

L'ajustage du zéro du débitmètre définit une référence pour la mesure de procédé en analysant la sortie du capteur lorsque le débit qui traverse les tubes du capteur est nul.

Prérequis

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Préparez le débitmètre :
 - a. Laisser chauffer le transmetteur pendant au moins 20 minutes après la mise sous tension.
 - b. Faire circuler le fluide de procédé dans le capteur jusqu'à ce que la température du capteur atteigne la température de service du fluide.
 - c. Arrêter l'écoulement dans le capteur en fermant la vanne en aval, puis la vanne en amont si disponible.
 - d. Vérifier que le capteur est bloqué, que l'écoulement est arrêté et que le capteur est complètement rempli de fluide.
 - e. Observer le niveau d'excitation, la température et la densité mesurés. S'ils sont stables, vérifiez la valeur Ajustage du zéro direct ou Vérification du zéro sur site. Si la valeur moyenne est proche de 0, il n'est pas nécessaire d'ajuster le zéro du débitmètre.
- 2. Choisissez ProLink > Etalonnage > Vérification et étalonnage du zéro.
- 3. Cliquez sur Etalonner le zéro.

4. Modifiez la Durée de l'ajustage si nécessaire.

La Durée de l'ajustage représente le temps alloué au transmetteur pour calculer le point d'ajustage du zéro. La Durée de l'ajustage par défaut est de 20 secondes. La valeur par défaut de la Durée de l'ajustage convient à la plupart des applications.

5. Cliquez sur Auto-ajustage du zéro.

Le voyant Etalonnage en cours devient rouge pendant la procédure d'ajustage du zéro. A la fin de la procédure :

- Si la procédure d'ajustage du zéro a réussi, le voyant Etalonnage en cours devient vert et une nouvelle valeur du zéro s'affiche.
- Si la procédure d'étalonnage du zéro échoue, le voyant Echec de l'étalonnage devient rouge.

Postrequis

Rétablir un écoulement normal dans le capteur en ouvrant les vannes.

Besoin d'aide? Si l'ajustage du zéro échoue :

- S'assurer que le débit est complètement arrêté, puis relancer la procédure d'ajustage du zéro.
- Eliminer ou réduire les sources de bruit électromécaniques, puis ressayer.
- Régler la Durée de l'ajustage sur une valeur inférieure, puis réessayer.
- En cas nouvel échec de l'ajustage du zéro, contacter Micro Motion.
- Pour utiliser le débitmètre avec une valeur du zéro précédente :
 - Pour restaurer la valeur du zéro définie en usine : ProLink > Vérification et étalonnage du zéro > Etalonner le zéro > Restaurer le zéro d'usine .
 - Pour restaurer la dernière valeur valide dans la mémoire du transmetteur : ProLink > Vérification et étalonnage du zéro > Etalonner le zéro > Restaurer le zéro précédent . Restaurer le zéro précédent n'est disponible que lorsque la fenêtre Etalonnage du débit est ouverte. Si vous fermez la fenêtre Etalonnage du débit, il ne sera plus possible de rétablir la valeur du zéro précédente.

Restriction

Ne restaurez l'ajustage du zéro d'usine que si le débitmètre est une unité distincte, qu'il a été ajusté en usine et que vous utilisez les composants d'origine.

19.1.2 Ajustage du zéro à l'aide de ProLink III

L'ajustage du zéro du débitmètre définit une référence pour la mesure de procédé en analysant la sortie du capteur lorsque le débit qui traverse les tubes du capteur est nul.

Prérequis

ProLink III doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Préparez le débitmètre :
 - a. Laisser chauffer le transmetteur pendant au moins 20 minutes après la mise sous tension.
 - b. Faire circuler le fluide de procédé dans le capteur jusqu'à ce que la température du capteur atteigne la température de service du fluide.

- c. Arrêter l'écoulement dans le capteur en fermant la vanne en aval, puis la vanne en amont si disponible.
- d. Vérifier que le capteur est bloqué, que l'écoulement est arrêté et que le capteur est complètement rempli de fluide.
- e. Observer le niveau d'excitation, la température et la densité mesurés. S'ils sont stables, vérifiez la valeur Ajustage du zéro direct ou Vérification du zéro sur site. Si la valeur moyenne est proche de 0, il n'est pas nécessaire d'ajuster le zéro du débitmètre.
- 2. Choisissez Outils d'appareil > Etalonnage > Vérification et étalonnage du zéro.
- 3. Cliquez sur Etalonner le zéro.
- 4. Modifiez la Durée de l'ajustage si nécessaire.

La Durée de l'ajustage représente le temps alloué au transmetteur pour calculer le point d'ajustage du zéro. La Durée de l'ajustage par défaut est de 20 secondes. La valeur par défaut de la Durée de l'ajustage convient à la plupart des applications.

5. Cliquez sur Etalonner le zéro.

Le message Etalonnage en cours s'affiche. Lorsque l'étalonnage est terminé :

- Si la procédure d'ajustage du zéro a réussi, le message Réussite de l'étalonnage et une nouvelle valeur du zéro s'affichent.
- Si la procédure d'ajustage du zéro échoue, le message Echec de l'étalonnage s'affiche.

Postrequis

Rétablir un écoulement normal dans le capteur en ouvrant les vannes.

Besoin d'aide? Si l'ajustage du zéro échoue :

- S'assurer que le débit est complètement arrêté, puis relancer la procédure d'ajustage du zéro.
- Eliminer ou réduire les sources de bruit électromécaniques, puis ressayer.
- Régler la Durée de l'ajustage sur une valeur inférieure, puis réessayer.
- En cas nouvel échec de l'ajustage du zéro, contacter Micro Motion.
- Pour utiliser le débitmètre avec une valeur du zéro précédente :
 - Pour restaurer la valeur du zéro définie en usine : Outils d'appareil > Vérification et étalonnage du zéro > Etalonner le zéro > Restaurer le zéro d'usine .
 - Pour restaurer la dernière valeur valide dans la mémoire du transmetteur : Outils d'appareil > Vérification et étalonnage du zéro > Etalonner le zéro > Restaurer le zéro précédent . Restaurer le zéro précédent n'est disponible que lorsque la fenêtre Etalonnage du débit est ouverte. Si vous fermez la fenêtre Etalonnage du débit, il ne sera plus possible de rétablir la valeur du zéro précédente.

Restriction

Ne restaurez l'ajustage du zéro d'usine que si le débitmètre est une unité distincte, qu'il a été ajusté en usine et que vous utilisez les composants d'origine.

19.1.3 Ajustage du zéro du débitmètre à l'aide de PROFIBUS EDD

L'ajustage du zéro du débitmètre définit une référence pour la mesure de procédé en analysant la sortie du capteur lorsque le débit qui traverse les tubes du capteur est nul.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Préparez le débitmètre :

- 1. Enregistrez la valeur du zéro stockée.
- 2. Laisser chauffer le transmetteur pendant au moins 20 minutes après la mise sous tension.
- 3. Faire circuler le fluide de procédé dans le capteur jusqu'à ce que la température du capteur atteigne la température de service du fluide.
- 4. Arrêter l'écoulement dans le capteur en fermant la vanne en aval, puis la vanne en amont si disponible.
- 5. Vérifier que le capteur est bloqué, que l'écoulement est arrêté et que le capteur est complètement rempli de fluide.
- 6. Observer le niveau d'excitation, la température et la densité mesurés. S'ils sont stables, vérifiez la valeur Ajustage du zéro direct ou Vérification du zéro sur site. Si la valeur moyenne est proche de 0, il n'est pas nécessaire d'ajuster le zéro du débitmètre.

Important

Dans la plupart des cas, l'ajustage du zéro du débitmètre a été effectué en usine et il n'est pas nécessaire de le refaire sur le site.

Remarque

Ne pas vérifier le zéro ni ajuster le zéro du débitmètre en présence d'une alarme critique. Corriger le problème avant de vérifier ou d'ajuster le zéro du débitmètre. Il est possible de vérifier le zéro ou d'ajuster le zéro du débitmètre en présence d'une alarme d'exploitation non critique.

Procédure

- 1. Choisissez Outils de service > Maintenance > Etalonnage du zéro.
- 2. Cliquez sur Auto-ajustage du zéro.
- 3. Suivez les instructions de la méthode guidée.

La Durée de l'ajustage représente le temps alloué au transmetteur pour calculer le point d'ajustage du zéro. La Durée de l'ajustage par défaut est de 20 secondes. La valeur par défaut de la Durée de l'ajustage convient à la plupart des applications.

Postrequis

Rétablir un écoulement normal dans le capteur en ouvrant les vannes.

Besoin d'aide? Si l'ajustage du zéro échoue :

- S'assurer que le débit est complètement arrêté, puis relancer la procédure d'ajustage du zéro.
- Eliminer ou réduire les sources de bruit électromécaniques, puis ressayer.
- Régler la Durée de l'ajustage sur une valeur inférieure, puis réessayer.
- En cas nouvel échec de l'ajustage du zéro, contacter Micro Motion.
- Pour utiliser le débitmètre avec une valeur du zéro précédente :

19.1.4 Ajuster le zéro du débitmètre à l'aide des paramètres de bus PROFIBUS

L'ajustage du zéro du débitmètre définit une référence pour la mesure de procédé en analysant la sortie du capteur lorsque le débit qui traverse les tubes du capteur est nul.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Préparez le débitmètre :

- 1. Enregistrez la valeur du zéro stockée.
- 2. Laisser chauffer le transmetteur pendant au moins 20 minutes après la mise sous tension.
- 3. Faire circuler le fluide de procédé dans le capteur jusqu'à ce que la température du capteur atteigne la température de service du fluide.
- 4. Arrêter l'écoulement dans le capteur en fermant la vanne en aval, puis la vanne en amont si disponible.
- 5. Vérifier que le capteur est bloqué, que l'écoulement est arrêté et que le capteur est complètement rempli de fluide.
- 6. Observer le niveau d'excitation, la température et la densité mesurés. S'ils sont stables, vérifiez la valeur Ajustage du zéro direct ou Vérification du zéro sur site. Si la valeur moyenne est proche de 0, il n'est pas nécessaire d'ajuster le zéro du débitmètre.

Important

Dans la plupart des cas, l'ajustage du zéro du débitmètre a été effectué en usine et il n'est pas nécessaire de le refaire sur le site.

Remarque

Ne pas vérifier le zéro ni ajuster le zéro du débitmètre en présence d'une alarme critique. Corriger le problème avant de vérifier ou d'ajuster le zéro du débitmètre. Il est possible de vérifier le zéro ou d'ajuster le zéro du débitmètre en présence d'une alarme d'exploitation non critique.

Procédure

1. Ecrivez la Durée de l'ajustage souhaitée dans le bloc d'étalonnage, index 7.

La Durée de l'ajustage représente le temps alloué au transmetteur pour calculer le point d'ajustage du zéro. La Durée de l'ajustage par défaut est de 20 secondes. La valeur par défaut de la Durée de l'ajustage convient à la plupart des applications.

- 2. Ecrivez 1 dans le bloc d'étalonnage, index 6, puis patientez pendant le nombre de secondes configuré.
- 3. Lisez l'état 5, bit n°15 (0x8000) pour contrôler la procédure d'ajustage du zéro.

Valeur	Description	
0	Ajustage du zéro terminé	
1	Ajustage du zéro en cours d'exécution	

4. Lisez l'état 3, bits n°9, 10 et 11 (0x0200, 0x0400 et 0x0800) pour connaître le résultat de la procédure d'ajustage du zéro.

Bit (hexadéc- imal)	Bit (déci- mal)	Condition	Valeur
0x0200	9	Echec d'ajustage du zéro : zéro trop bas	 0 = Condition inactive 1 = Condition active
0x0400	10	Echec d'ajustage du zéro : zéro trop haut	 0 = Condition inactive 1 = Condition active
0x0800	11	Echec d'ajustage du zéro : in- stable	 0 = Condition inactive 1 = Condition active

Si les trois conditions sont inactives, l'ajustage du zéro réussit.

Postrequis

Rétablir un écoulement normal dans le capteur en ouvrant les vannes.

Besoin d'aide? Si l'ajustage du zéro échoue :

- S'assurer que le débit est complètement arrêté, puis relancer la procédure d'ajustage du zéro.
- Eliminer ou réduire les sources de bruit électromécaniques, puis ressayer.
- Régler la Durée de l'ajustage sur une valeur inférieure, puis réessayer.
- En cas nouvel échec de l'ajustage du zéro, contacter Micro Motion.
- Pour utiliser le débitmètre avec une valeur du zéro précédente :

19.2 Vérifier le débitmètre

ProLink II	ProLink > Configuration > Débit	
ProLink III	Device Tools > Configuration > Process Measurement > Flow	
	Device Tools > Configuration > Process Measurement > Density	
PROFIBUS EDD	Configurer > Configuration manuelle > Mesures	
PROFIBUS bus pa-	Facteur de masse : Bloc : Mesure, index 15	
rameters	Facteur de volume : Bloc : Mesure, index 17	
	Facteur de densité : Bloc : Mesure, index 16	

Vue d'ensemble

La procédure de vérification du débitmètre compare les mesures effectuées par le débitmètre et transmises par le transmetteur à une mesure étalon externe. Si la masse, le volume ou la densité indiqué(e) par le transmetteur est différente de la valeur indiquée par la mesure étalon, il peut être nécessaire de modifier les facteurs d'ajustage. La mesure du débitmètre est multipliée par le facteur du débitmètre et la valeur obtenue est transmise et utilisé pour les traitements ultérieurs.

Prérequis

Identifiez le ou les facteurs que vous calculerez et définirez. Il est possible de régler toute combinaison des trois facteurs d'ajustage de la masse, du volume ou de la masse volumique. Notez que les trois facteurs d'ajustage sont indépendants :

- Le facteur d'ajustage en masse a un impact uniquement sur la mesure de débit massique.
- Le facteur d'ajustage en densité a un impact uniquement sur la mesure de densité.
- Le facteur d'ajustage en volume a un impact uniquement sur la mesure de débit volumique.

Important

Pour ajuster la mesure de débit volumique, il faut régler le facteur d'ajustage en volume. Le fait de régler les facteurs d'ajustage en masse et en densité ne produira pas le résultat escompté. Le calcul du débit volumique est effectué à l'aide des valeurs brutes du débit massique et de la densité, avant que leurs facteurs d'ajustage correspondants aient été appliqués.

Si vous envisagez de calculer le facteur d'ajustage en volume, notez que les procédures de vérification sur site du débit volumique sont généralement onéreuses et qu'elles peuvent être dangereuses avec certains types de fluides de procédé. Le volume étant inversement proportionnel à la densité, il possible de calculer le facteur d'ajustage en volume à partir du facteur d'ajustage en densité au lieu d'effectuer une mesure directe. Voir *Section 19.2.1* pour obtenir des instructions sur cette méthode.

Obtenez un appareil de référence (appareil de mesure externe) pour la variable de procédé concernée.

Important

Pour de meilleurs résultats, l'appareil de référence doit être extrêmement précis.

Procédure

- 1. Déterminez le facteur d'ajustage comme suit :
 - a. Utilisez le débitmètre pour effectuer une mesure d'échantillon.
 - b. Mesurez le même échantillon à l'aide de l'appareil de référence.
 - c. Calculez le facteur d'ajustage à l'aide de la formule suivante :

Nouveau facteur	Facteur d'ajustage existant x	MesureRéférence
d'ajustage		MesureDébitmètre

- 2. Vérifiez que le facteur d'ajustage calculé est comprise entre 0,8 et 1,2. Si le facteur d'ajustage est en dehors de ces limites, contactez le service client de Micro Motion.
- 3. Configurez le facteur d'ajustage dans le transmetteur.

Exemple : Calcul du facteur de débit massique

Le débitmètre vient d'être installé et vérifié. La mesure de débit massique du transmetteur est de 250,27 lb. La mesure de débit massique de l'appareil de référence est de 250 lb. Le facteur de débit massique est calculé comme suit :

Facteur $= 1 \times \frac{250}{250.27} = 0.9989$

Le facteur d'ajustage initial est de 0,9989.
Un an plus tard, l'étalonnage du débitmètre est à nouveau vérifié. La mesure de débit massique du transmetteur est de 250,07 lb. La mesure de débit massique de l'appareil de référence est de 250,25 lb. Le nouveau facteur de débit massique est calculé comme suit :

Facteur d'ajustage_{Débitmassique} = $0.9989 \times \frac{250.25}{250.07} = 0.9996$

Le nouveau facteur d'ajustage de débit massique est de 0,9996.

19.2.1 Autre méthode de calcul du facteur d'ajustage de débit volumique

L'autre méthode de calcul du facteur d'ajustage du débit volumique permet d'éviter les éventuels problèmes liés à la méthode standard.

Cette autre méthode est basée sur le fait que le volume est inversement proportionnel à la densité. Elle permet d'effectuer une correction partielle en ajustant la portion du décalage total qui est causée par le décalage de la mesure de masse volumique. Utilisez cette méthode uniquement s'il n'est pas possible d'effectuer une mesure étalon du débit volumique, mais qu'une mesure étalon de la densité est disponible.

Procédure

- 1. Calculez le facteur d'ajustage de densité selon la méthode standard (voir *Section 19.2*).
- 2. Calculez le facteur d'ajustage de débit volumique à partir du facteur d'ajustage de densité :

- 3. Vérifiez que le facteur d'ajustage calculé est comprise entre 0,8 et 1,2. Si le facteur d'ajustage est en dehors de ces limites, contactez le service client de Micro Motion.
- 4. Configurez le facteur d'ajustage de débit volumique dans le transmetteur.

19.3 Effectuer un étalonnage en masse volumique des fluides D1 et D2 (standard)

L'étalonnage en densité établit la relation entre la densité des fluides d'étalonnage et le signal généré au niveau du capteur. L'étalonnage en densité inclut l'étalonnage des points d'étalonnage D1 (densité basse) et D2 (densité haute).

Important

Micro Motion Les débitmètres sont étalonnés à l'usine et ne requièrent en principe aucun étalonnage sur site. N'effectuez l'étalonnage que s'il est requis par un organisme de métrologie légale. Contactez Micro Motion avant d'étalonner le débitmètre.

Conseil

Micro Motion recommande d'utiliser la fonction de vérification du débitmètre et les facteurs d'ajustage de l'étalonnage plutôt que de réétalonner le débitmètre.

19.3.1 Effectuer un étalonnage en masse volumique des fluides D1 et D2 à l'aide de ProLink II

Prérequis

- Pendant la procédure d'étalonnage, les tubes du capteur doivent être complètement remplis de fluide d'étalonnage et celui-ci doit circuler au débit minimum permis par l'application. Ceci se fait généralement en fermant la vanne d'arrêt située en aval du capteur et en remplissant le capteur de fluide d'étalonnage approprié.
- L'étalonnage sur D1 (faible masse volumique) et D2 (forte masse volumique) requiert l'utilisation de deux fluides d'étalonnage de masse volumique connue, en principe de l'air et de l'eau.
- Les étalonnages doivent être effectués sans interruption, dans l'ordre indiqué. Assurez-vous que vous êtes en mesure de suivre la procédure complète sans interruption.
- Avant d'effectuer l'étalonnage, notez les coefficients d'étalonnage actuels. Cela peut se faire en sauvegardant la configuration actuelle dans un fichier sur l'ordinateur. Si l'étalonnage échoue, rétablissez les coefficients d'origine.

Procédure

Voir Figure 19-1.

Figure 19-1: Etalonnage en masse volumique des fluides D1 et D2 à l'aide de ProLink II

19.3.2 Effectuer un étalonnage en masse volumique des fluides D1 et D2 à l'aide de ProLink III

Prérequis

- Pendant la procédure d'étalonnage, les tubes du capteur doivent être complètement remplis de fluide d'étalonnage et celui-ci doit circuler au débit minimum permis par l'application. Ceci se fait généralement en fermant la vanne d'arrêt située en aval du capteur et en remplissant le capteur de fluide d'étalonnage approprié.
- L'étalonnage sur D1 (faible masse volumique) et D2 (forte masse volumique) requiert l'utilisation de deux fluides d'étalonnage de masse volumique connue, en principe de l'air et de l'eau.
- Les étalonnages doivent être effectués sans interruption, dans l'ordre indiqué. Assurez-vous que vous êtes en mesure de suivre la procédure complète sans interruption.
- Avant d'effectuer l'étalonnage, notez les coefficients d'étalonnage actuels. Cela peut se faire en sauvegardant la configuration actuelle dans un fichier sur l'ordinateur. Si l'étalonnage échoue, rétablissez les coefficients d'origine.

Procédure

Voir *Figure 19-2*.

Figure 19-2: Etalonnage en masse volumique des fluides D1 et D2 à l'aide de ProLink III

19.3.3 Effectuer un étalonnage en masse volumique des fluides D1 et D2 à l'aide de PROFIBUS EDD

Prérequis

- Pendant la procédure d'étalonnage, les tubes du capteur doivent être complètement remplis de fluide d'étalonnage et celui-ci doit circuler au débit minimum permis par l'application. Ceci se fait généralement en fermant la vanne d'arrêt située en aval du capteur et en remplissant le capteur de fluide d'étalonnage approprié.
- L'étalonnage sur D1 (faible masse volumique) et D2 (forte masse volumique) requiert l'utilisation de deux fluides d'étalonnage de masse volumique connue, en principe de l'air et de l'eau.
- Les étalonnages doivent être effectués sans interruption, dans l'ordre indiqué. Assurez-vous que vous êtes en mesure de suivre la procédure complète sans interruption.
- Avant d'effectuer l'étalonnage, notez les paramètres d'étalonnage actuels. Si l'étalonnage échoue, rétablissez les valeurs d'origine.

Procédure

- 1. Pour effectuer un étalonnage du fluide D1 :
 - a. Remplissez le capteur avec le fluide D1.
 - b. Cliquez sur Outils de service > Maintenance > Etalonnages en masse volumique > Etalonnage du premier point.

Le premier écran de la méthode guidée s'affiche.

- c. Suivez les instructions de la méthode guidée.
- 2. Pour effectuer un étalonnage du fluide D2 :
 - a. Remplissez le capteur avec le fluide D2.
 - b. Cliquez sur Outils de service > Maintenance > Etalonnages en masse volumique > Etalonnage du second point.

Le premier écran de la méthode guidée s'affiche.

c. Suivez les instructions de la méthode guidée.

19.3.4 Effectuer un étalonnage en masse volumique des fluides D1 et D2 à l'aide de PROFIBUS bus parameters

Prérequis

- Pendant la procédure d'étalonnage, les tubes du capteur doivent être complètement remplis de fluide d'étalonnage et celui-ci doit circuler au débit minimum permis par l'application. Ceci se fait généralement en fermant la vanne d'arrêt située en aval du capteur et en remplissant le capteur de fluide d'étalonnage approprié.
- L'étalonnage sur D1 (faible masse volumique) et D2 (forte masse volumique) requiert l'utilisation de deux fluides d'étalonnage de masse volumique connue, en principe de l'air et de l'eau.
- Les étalonnages doivent être effectués sans interruption, dans l'ordre indiqué. Assurez-vous que vous êtes en mesure de suivre la procédure complète sans interruption.
- Avant d'effectuer l'étalonnage, notez les paramètres d'étalonnage actuels. Si l'étalonnage échoue, rétablissez les valeurs d'origine.

Procédure

Voir Figure 19-3.

Figure 19-3: Effectuer un étalonnage des fluides D1 et D2 à l'aide de PROFIBUS bus parameters

19.4 Effectuer un étalonnage en température

L'étalonnage en température établit la relation entre la température des fluides d'étalonnage et le signal généré par le capteur.

19.4.1 Effectuer un étalonnage en température à l'aide de ProLink II

L'étalonnage en température établit la relation entre la température des fluides d'étalonnage et le signal généré par le capteur.

Prérequis

L'étalonnage en température est une procédure d'étalonnage sur deux points : décalage et pente. Les deux parties de l'étalonnage doivent être effectuées sans interruption, dans l'ordre indiqué. Assurez-vous que vous êtes en mesure de suivre la procédure complète sans interruption.

Important

Consultez Micro Motion avant d'effectuer un étalonnage en température. Dans des circonstances normales, le circuit de température est stable et ne doit pas nécessiter d'ajustage.

Procédure

Voir Figure 19-4.

Figure 19-4: Etalonnage en température à l'aide de ProLink II

19.4.2 Effectuer un étalonnage en température à l'aide de ProLink III

L'étalonnage en température établit la relation entre la température des fluides d'étalonnage et le signal généré par le capteur.

Prérequis

L'étalonnage en température est une procédure d'étalonnage sur deux points : décalage et pente. Les deux parties de l'étalonnage doivent être effectuées sans interruption, dans l'ordre indiqué. Assurez-vous que vous êtes en mesure de suivre la procédure complète sans interruption.

Important

Consultez Micro Motion avant d'effectuer un étalonnage en température. Dans des circonstances normales, le circuit de température est stable et ne doit pas nécessiter d'ajustage.

Procédure

Voir Figure 19-5.

20 Dépannage

Sujets couverts dans ce chapitre:

- Alarmes d'état
- Problèmes de mesure du débit
- Problèmes de mesure de la masse volumique
- Problèmes de mesure de température
- Problèmes sur les sorties analogiques
- Problèmes de sortie impulsions
- Utilisation de la simulation de capteur pour le dépannage
- Vérification du câblage de l'alimentation
- Vérifier la mise à la terre
- Effectuer des tests de boucle
- Ajuster les sorties analogiques
- Vérifier la Valeur basse d'échelle et la Valeur haute d'échelle
- Contrôler l'Action sur défaut de la sortie analogique
- Vérifier les interférences radio (RFI)
- Contrôler la Largeur maximum de la sortie impulsions
- Contrôler le Mode de réglage de la sortie impulsions
- Contrôler l'Action sur défaut de la sortie impulsions
- Vérification du paramètre Sens d'écoulement
- Contrôler les seuils de coupure
- Mise en évidence d'un écoulement biphasique
- Vérification du niveau d'excitation
- Vérification du niveau de détection
- Vérification de court-circuit

20.1 Alarmes d'état

Tableau 20-1: Alarmes d'état et actions recommandées

Code de l'alarme	Description	Cause	Actions recommandées
A001	Erreur EEPROM (platine processeur)	Détection d'un désac- cord non corrigible du total de contrôle.	Eteignez le débitmètre, puis remettez-le sous tension.Contactez Micro Motion.
A002	Erreur RAM (platine processeur)	Erreur de total de con- trôle de ROM ou impos- sibilité d'écrire dans la mémoire RAM.	 Eteignez le débitmètre, puis remettez-le sous tension. Contactez Micro Motion.

Code de l'alarme	Description	Cause	Actions recommandées
A003	Aucune réponse du capteur	Panne de continuité du circuit d'excitation ou de détection droit ou gauche, ou déséquilibre entre les bobines de dé- tection gauche et droite.	 Vérifiez le niveau d'excitation et la tension de détection. Voir la <i>Section 20.21</i> et la <i>Section 20.22</i>. Vérifiez qu'il n'y a pas de court-circuit. Voir la <i>Section 20.23</i>. Vérifiez l'intégrité des tubes de mesure du capteur.
A004	Température hors lim- ites	Combinaison des alertes A016 et A017.	 Vérifiez les paramètres de caractérisation de température (Coef étal temp). Vérifiez les conditions de votre procédé par rapport aux valeurs indiquées par le débitmè- tre. Contactez Micro Motion.
A005	Débit massique hors limites	Le débit mesuré excède le débit maximal du capteur (ΔT supérieur à 200 μs).	 Si d'autres conditions d'alarme sont présentes, résolvez-les en priorité. Si l'alarme actuelle persiste, continuez à mettre en œuvre les actions recommandées. Vérifiez les conditions de votre procédé par rapport aux valeurs indiquées par le débitmètre. Assurez-vous qu'il n'y a pas d'écoulement biphasique. Voir la <i>Section 20.20</i>. Vérifiez le niveau d'excitation et la tension de détection. Voir la <i>Section 20.21</i> et la <i>Section 20.22</i>. Vérifiez qu'il n'y a pas de court-circuit. Voir la <i>Section 20.23</i>. Vérifiez l'intégrité des tubes de mesure du capteur. Contactez Micro Motion.
A006	Caractérisation requise	Les coefficients d'éta- lonnage n'ont pas été saisis et le type de cap- teur est incorrect.	 Vérifiez que tous les paramètres de caractéri- sation correspondent aux données figurant sur la plaque signalétique du capteur. Contactez Micro Motion.

rabieda no in filarines a ceae ce accions recommunaces (sance)	Tableau 20-1:	Alarmes d'état et actions recommandées (se	uite)
--	---------------	--	-------

Code de l'alarme	Description	Cause	Actions recommandées
A008	Masse volumique hors limites	La masse volumique du fluide mesuré est su- périeure à 10 g/cm ³ .	 Si d'autres conditions d'alarme sont présentes, résolvez-les en priorité. Si l'alarme actuelle persiste, continuez à mettre en œuvre les actions recommandées. Vérifiez les conditions du procédé. Assurezvous notamment qu'il n'y a pas d'air dans les tubes et que ces tubes ne sont pas partiellement remplis, bouchés par des corps étrangers ou colmatés. Assurezvous qu'il n'y a pas d'écoulement biphasique. Voir la <i>Section 20.20</i>. Si une alarme A003 se déclenche en plus, vérifiez qu'il n'y a pas de court-circuit. Voir la <i>Section 20.23</i>. Vérifiez que tous les paramètres de caractérisation correspondent aux données figurant sur la plaque signalétique du capteur. Vérifiez le niveau d'excitation et la tension de détection. Voir la <i>Section 20.21</i> et la <i>Section 20.22</i>. Effectuez un étalonnage en masse volumique. Contactez Micro Motion.
A009	Initialisation/mise en température du trans- metteur	Le transmetteur est en mode mise sous ten- sion.	 Laissez chauffer le transmetteur. Vérifiez que les tubes sont pleins de liquide procédé.
A010	Echec de l'étalonnage	Plusieurs causes possi- bles, parmi lesquelles un débit trop élevé dans le capteur pend- ant une procédure d'étalonnage.	 Si cette alarme apparaît lors d'un ajustage du zéro, vérifiez que le débit est nul au sein du capteur, puis relancez la procédure d'ajustage du zéro. Eteignez le débitmètre, puis remettez-le sous tension et réessayez.
A011	Echec de l'ajustage du zéro : débit faible	Plusieurs causes possi- bles, parmi lesquelles un débit trop élevé - no- tamment en sens in- verse - dans le capteur pendant une procédure d'étalonnage	 Vérifiez que le débit est nul au sein du capteur, puis réessayez. Eteignez le débitmètre, puis remettez-le sous tension et réessayez.
A012	Echec de l'ajustage du zéro : débit excessif	Plusieurs causes possi- bles, parmi lesquelles un débit trop élevé - no- tamment en sens nor- mal - dans le capteur pendant une procédure d'étalonnage.	 Vérifiez que le débit est nul au sein du capteur, puis réessayez. Eteignez le débitmètre, puis remettez-le sous tension et réessayez.

Tableau 20-1: Alarmes d'état et actions recommandées (suite)

Code de l'alarme	Description	Cause	Actions recommandées
A013	Echec de l'ajustage du zéro : débit instable	L'environnement a été trop instable pendant la procédure d'étalon- nage.	 Otez les sources de bruit électromagnétique (par exemple, les pompes, les dispositifs vi- brants ou exerçant des contraintes mécani- ques) ou réduisez leur régime, puis réessayez. Eteignez le débitmètre, puis remettez-le sous tension et réessayez.
A014	Panne du transmetteur	Plusieurs causes possi- bles.	Eteignez le débitmètre, puis remettez-le sous tension.Contactez Micro Motion.
A016	Panne de la sonde de température	La valeur de résistance calculée pour la sonde de température du cap- teur est hors limites.	 Vérifiez les conditions de votre procédé par rapport aux valeurs indiquées par le débitmè- tre. Contactez Micro Motion.
A017	Panne de la sonde de température de série T	La valeur de résistance calculée pour la sonde de température du cap- teur/boîtier est hors limites.	 Vérifiez les conditions de votre procédé par rapport aux valeurs indiquées par le débitmè- tre. La température doit être comprise entre -200 °F et +400 °F. Vérifiez que tous les paramètres de caractéri- sation correspondent aux données figurant sur la plaque signalétique du capteur. Contactez Micro Motion.
A020	Aucune valeur d'étalon- nage en débit	Le coefficient d'étalon- nage en débit et/ou K1 n'ont pas été entrés depuis la dernière réini- tialisation générale.	 Vérifiez que tous les paramètres de caractéri- sation correspondent aux données figurant sur la plaque signalétique du capteur.
A021	Type de capteur incor- rect (K1)	Le capteur détecté est de type monotube droit mais la valeur de K1 in- dique qu'il s'agit d'un capteur à tubes courbes, ou vice versa.	 Vérifiez que tous les paramètres de caractéri- sation correspondent aux données figurant sur la plaque signalétique du capteur.
A029	Défaut de communica- tion PIC/carte fille	Une erreur de commu- nication s'est produite avec un sous-ensemble matériel.	Contactez Micro Motion.
A030	Type de carte incorrect		Contactez Micro Motion.
A031	Tension d'alimentation faible	La tension d'alimenta- tion du transmetteur est trop faible.	• Vérifiez l'alimentation et son câblage. Voir la <i>Section 20.8.</i>
A033	Signal de détecteur droit/gauche insuffisant	Aucun signal en prove- nance de la bobine de détection droite ou gauche, ce qui suggère que les tubes de cap- teur ne vibrent pas.	 Vérifiez les conditions du procédé. Assurez- vous notamment qu'il n'y a pas d'air dans les tubes et que ces tubes ne sont pas partielle- ment remplis, bouchés par des corps étrang- ers ou colmatés.

Tableau 20-1: Alarmes d'état et actions recommandées (suite)

Code de l'alarme	Description	Cause	Actions recommandées
A102	Excitation hors limites	La puissance d'excita- tion (courant/tension) est à son maximum.	 Vérifiez le niveau d'excitation et la tension de détection. Voir la <i>Section 20.21</i> et la <i>Section 20.22</i>. Vérifiez qu'il n'y a pas de court-circuit. Voir la <i>Section 20.23</i>.
A104	Etalonnage en cours	Une procédure d'éta- lonnage est en cours.	 Attendez que la procédure se termine. S'il s'agit d'un ajustage du zéro, il est possible d'interrompre la procédure et de diminuer la valeur du paramètre Durée de l'ajustage avant de relancer l'ajustage.
A105	Ecoulement biphasique	La masse volumique du fluide est en dehors des limites d'écoulement biphasique définies par l'utilisateur.	 Assurez-vous qu'il n'y a pas d'écoulement bi- phasique. Voir la Section 20.20.
A107	Coupure d'alimentation	Le transmetteur a été redémarré.	 Aucune action requise. Si nécessaire, vous pouvez reconfigurer le niveau de gravité de l'alarme sur Ignorer.
A110	Sortie impulsions satur- ée	La fréquence calculée est en dehors de la gamme linéaire de la sortie.	 Vérifiez le réglage de la sortie impulsions. Voir la Section 20.16. Vérifiez les conditions du procédé. Les condi- tions réelles sont peut-être en dehors des pla- ges normales pour lesquelles la sortie a été configurée. Vérifiez les conditions du procédé. Assurez- vous notamment qu'il n'y a pas d'air dans les tubes et que ces tubes ne sont pas partielle- ment remplis, bouchés par des corps étrang- ers ou colmatés. Vérifiez que les unités de mesure sont config- urées correctement pour votre application. Nettoyez la paroi interne des tubes de mesure.
A111	Sortie impulsions forcée	La sortie impulsions a été configurée pour en- voyer une valeur con- stante.	 Vérifiez si la sortie ne serait pas en mode Test de boucle. Si tel est le cas, remettez la sortie en mode normal. Vérifiez si la sortie n'aurait pas été configurée pour envoyer une valeur constante via la com- munication numérique.

Tableau 20-1: Alarmes d'état et actions recommandées (suite)

Code de l'alarme	Description	Cause	Actions recommandées
A113	Sortie analogique 2 sat- urée		 Vérifiez les conditions du procédé. Les conditions réelles sont peut-être en dehors des plages normales pour lesquelles la sortie a été configurée. Vérifiez les conditions du procédé. Assurezvous notamment qu'il n'y a pas d'air dans les tubes et que ces tubes ne sont pas partiellement remplis, bouchés par des corps étrangers ou colmatés. Vérifiez que les unités de mesure sont configurées correctement pour votre application. Nettoyez la paroi interne des tubes de mesure. Vérifiez le paramétrage de Valeur haute d'échelle et de Valeur basse d'échelle. Voir la Section 20.12.
A114	Sortie analogique 2 forcée		 Vérifiez si la sortie ne serait pas en mode Test de boucle. Si tel est le cas, remettez la sortie en mode normal. Sortez du mode d'ajustage de sortie, s'il y a lieu. Vérifiez si la sortie n'aurait pas été configurée pour envoyer une valeur constante via la com- munication numérique.
A118	Sortie TOR 1 forcée	La sortie TOR a été con- figurée pour envoyer une valeur constante.	 Vérifiez si la sortie ne serait pas en mode Test de boucle. Si tel est le cas, remettez la sortie en mode normal.
A132	Simulation du capteur activée	Le mode de simulation est activé.	Aucune action requise.Désactivez la simulation de capteur.

rabicad Eo in Addition a clar cractions recommandees (sale)	Tableau 20-1:	Alarmes d'état et actions recommandées	(suite)
---	---------------	--	---------

20.2 Problèmes de mesure du débit

Tableau 20-2: Problèmes de mesure du débit et actions recommandées

Problème	Causes possibles	Actions recommandées
Indication de l'écoule- ment dans des condi- tions de débit nul ou de décalage du zéro	 Tuyauterie mal alignée (problème fréquent dans les nouvelles installations) Ouverture ou fuite de la vanne d'arrêt Ajustage du zéro du capteur incorrect 	 Vérifiez que tous les paramètres de caractérisation correspondent aux données figurant sur la plaque signalétique du capteur. Si le flux indiqué n'est pas excessivement élevé, vérifiez le débit sous seuil. Vous pouvez avoir à rétablir le zéro d'usine. Vérifiez qu'il n'y a pas de vanne ouverte ou de fuite au niveau d'une vanne ou d'un joint. Vérifiez qu'il n'y a pas de contraintes mécaniques sur le capteur (par exemple, que le capteur n'est pas utilisé pour soutenir le capteur ou que la tuyauterie n'est pas mal alignée). Contactez Micro Motion.

Problème	Causes possibles	Actions recommandées
Le débitmètre indique un débit erratique lorsque l'écoulement dans la conduite est nul	 Fuite au niveau d'une vanne ou d'un joint Ecoulement biphasique Tube de mesure obturé ou colmaté Mauvaise orientation du capteur Problème de câblage Vibrations dans la tuyauterie à une fré- quence proche de celle des tubes du capteur Valeur d'amortissement trop basse Contraintes mécaniques sur le capteur 	 Vérifiez que l'orientation du capteur est adaptée à votre application (consultez le manuel d'installation du capteur). Vérifiez le niveau d'excitation et la tension de détection. Voir la <i>Section 20.21</i> et la <i>Section 20.22</i>. Nettoyez la paroi interne des tubes de me- sure. Vérifiez qu'il n'y a pas de vanne ouverte ou de fuite au niveau d'une vanne ou d'un joint. Vérifiez qu'il n'y a pas de sources de vibration. Vérifiez qu els unités de mesure sont config- urées correctement pour votre application. Assurez-vous qu'il n'y a pas d'écoulement bi- phasique. Voir la <i>Section 20.20</i>. Vérifiez qu'il n'y a pas d'interférences radio. Voir la <i>Section 20.14</i>. Contactez Micro Motion.
Le débitmètre indique un débit erratique lorsque l'écoulement dans la conduite est stable	 Ecoulement biphasique Valeur d'amortissement trop basse Tube de mesure obturé ou colmaté Problème de câblage de la sortie Problème au niveau du récepteur Problème de câblage 	 Vérifiez que l'orientation du capteur est adaptée à votre application (consultez le manuel d'installation du capteur). Vérifiez le niveau d'excitation et la tension de détection. Voir la Section 20.21 et la Section 20.22. Vérifiez qu'il n'y a pas d'entraînement d'air et que les tubes ne mesure ne sont pas encrass- és endommagés, et qu'il n'y pas de vaporisa- tion. Nettoyez la paroi interne des tubes de me- sure. Vérifiez qu'il n'y a pas de vanne ouverte ou de fuite au niveau d'une vanne ou d'un joint. Vérifiez qu'il n'y a pas de sources de vibration. Vérifiez que les unités de mesure sont config- urées correctement pour votre application. Assurez-vous qu'il n'y a pas d'écoulement bi- phasique. Voir la Section 20.20. Vérifiez qu'il n'y a pas d'interférences radio. Voir la Section 20.14. Contactez Micro Motion.

Tableau 20-2: Problèmes de mesure du débit et actions recommandées (suite)

Problème	Causes possibles	Actions recommandées
Inexactitude des me- sures de débit ou du total de batch	 Problème de câblage Unité de mesure inappropriée Mauvais coefficient d'étalonnage en débit Coefficient de débitmètre incorrect Mauvais coefficients d'étalonnage en masse volumique Mise à la terre du débitmètre incorrecte Ecoulement biphasique Problème au niveau du récepteur 	 Vérifiez que les unités de mesure sont configurées correctement pour votre application. Vérifiez que tous les paramètres de caractérisation correspondent aux données figurant sur la plaque signalétique du capteur. Effectuez un test de cuve pour vérifier les quantités à livrer totales. Ajustez le zéro du débitmètre. Vérifiez la mise à la terre Voir la Section 20.9. Assurez-vous qu'il n'y a pas d'écoulement biphasique. Voir la Section 20.20. Vérifiez le récepteur ainsi que le câblage entre le transmetteur et le récepteur. Remplacez la platine processeur ou le transmetteur.

Tableau 20-2: Problèmes de mesure du débit et actions recommandées (suite)

20.3 Problèmes de mesure de la masse volumique

Problème	Causes possibles	Actions recommandées
Inexactitude de la me- sure de masse volumi- que	 Problème avec le fluide procédé Mauvais coefficients d'étalonnage en masse volumique Problème de câblage Mise à la terre du débitmètre incorrecte Ecoulement biphasique Tube de mesure obturé ou colmaté Mauvaise orientation du capteur Sonde de température défectueuse Les caractéristiques physiques du capteur ont changé 	 Vérifiez la mise à la terre Voir la Section 20.9. Vérifiez les conditions de votre procédé par rapport aux valeurs indiquées par le débitmètre. Vérifiez que tous les paramètres de caractérisation correspondent aux données figurant sur la plaque signalétique du capteur. Assurez-vous qu'il n'y a pas d'écoulement biphasique. Voir la Section 20.20. Si deux capteurs présentant une fréquence similaire sont trop proches l'un de l'autre, éloignez-les l'un de l'autre. Nettoyez la paroi interne des tubes de mesure.
Indication de masse volumique anormale- ment haute	 Tube de mesure obturé ou colmaté Valeur K2 incorrecte Mesure de température incorrecte Problème de sonde à résistance Dans les débitmètres haute fréquence, cela peut indiquer une érosion ou une corrosion Dans les débitmètres basse fréquence, cela peut indiquer un encrassement du tube 	 Vérifiez que tous les paramètres de caractéri- sation correspondent aux données figurant sur la plaque signalétique du capteur. Nettoyez la paroi interne des tubes de me- sure. Vérifiez que les tubes de mesure ne sont pas encrassés.

Tableau 20-3: Problèmes de mesure de masse volumique et actions recommandées

Problème	Causes possibles	Actions recommandées
Indication de masse volumique anormale- ment basse	 Ecoulement biphasique Valeur K2 incorrecte Dans les débitmètres basse fréquence, cela peut indiquer une érosion ou une corrosion 	 Vérifiez les conditions de votre procédé par rapport aux valeurs indiquées par le débitmè- tre. Vérifiez que tous les paramètres de caractéri- sation correspondent aux données figurant sur la plaque signalétique du capteur. Vérifiez que les tubes de mesure ne sont pas érodés, notamment si le fluide procédé est abrasif.

Tableau 20-3: Problèmes de mesure de masse volumique et actions recommandées (suite)

20.4 Problèmes de mesure de température

B 11		
Probleme	Causes possibles	Actions recommandees
Indication de tempér- ature très différente de la température du fluide mesuré	 Sonde de température défectueuse Problème de câblage 	 Vérifiez qu'il n'y a pas d'humidité ni de vert- de-gris dans le . Assurez-vous que le facteur d'étalonnage en température correspond à la valeur in- scrite sur la plaque signalétique de la sonde. Consultez les alarmes d'état (notamment les alarmes de panne de sonde RTD). Désactivez la compensation de tempéra- ture externe. Vérifiez l'étalonnage en température.
Indication de tempér- ature légèrement dif- férente de la tempéra- ture du fluide mesuré	 Température de la sonde pas encore égali- sée Perte de chaleur au niveau du capteur 	 La sonde RTD a une précision de ±1°C. Si l'erreur est comprise dans cette plage, il n'y a pas de problème. Si la température de mesure est située en dehors de la plage de précision du capteur, contactez Micro Motion. La température du fluide peut changer rapidement. Laissez suffisamment de temps à la sonde pour s'agliser en fonction du fluide procédé. Isolez la sonde, si nécessaire Le contact entre la résistance RTD et la sonde n'est peut-être pas bon. La sonde doit peut-être être remplacée.

Tableau 20-4: Problèmes de mesure de température et actions recommandées

20.5 Problèmes sur les sorties analogiques

Problème	Causes possibles	Actions recommandées
Aucune sortie ana- logique	Problème de câblagePanne du circuit	 Vérifiez l'alimentation et son câblage. Voir la Section 20.8. Vérifiez le câblage de la sortie analogique. Vérifiez les paramètres Action sur défaut. Voir la Section 20.13. Mesurez la tension continue aux bornes de la sortie pour vérifier que cette sortie est active. Contactez Micro Motion.
Echec du test de bou- cle	 Problème d'alimentation Problème de câblage Panne du circuit Mauvaise configuration d'alimentation de l'alimentation (interne ou externe) 	 Vérifiez l'alimentation et son câblage. Voir la Section 20.8. Vérifiez le câblage de la sortie analogique. Vérifiez les paramètres Action sur défaut. Voir la Section 20.13. Contactez Micro Motion.
Sortie analogique in- férieure à 4 mA	 Circuit ouvert Circuit de sortie défectueux Le débit est inférieur à la valeur basse de l'échelle configurée Mauvais réglage des valeurs haute et basse Défaut si Action sur défaut est configuré sur Zéro interne ou sur Valeur basse L'appareil raccordé à la sortie analogique est défectueux 	 Vérifiez les conditions de votre procédé par rapport aux valeurs indiquées par le débitmètre. Vérifiez le récepteur ainsi que le câblage entre le transmetteur et le récepteur. Vérifiez le paramétrage de Valeur haute d'échelle et de Valeur basse d'échelle. Voir la <i>Section 20.12.</i> Vérifiez les paramètres Action sur défaut. Voir la <i>Section 20.13.</i>
Niveau de la sortie an- alogique figé	 Variable de procédé incorrecte affectée à la sortie Une condition d'erreur existe Adresse HART différente de zéro (sortie analogique 1) Sortie configurée pour le mode Test de boucle Echec de l'ajustage du zéro 	 Vérifiez les affectations de variable de pro- cédé. Affichez et résolvez les conditions d'alarme existantes. Vérifiez s'il n'y a pas un test de boucle en cours (sortie forcée). Si le problème est lié à une erreur d'aju- stage du zéro, éteignez le débtimètre, puis remettez-le sous tension et essayez de nouveau d'ajuster le zéro.
Sortie analogique sys- tématiquement hors échelle	 Variable de procédé ou unités incorrectes affectées à la sortie Défaut si Action sur défaut est défini sur Valeur haute ou sur Valeur basse Mauvais réglage des valeurs haute et basse 	 Vérifiez les affectations de variable de pro- cédé. Vérifiez les unités de mesure configurées pour la sortie. Vérifiez les paramètres Action sur défaut. Voir la <i>Section 20.13</i>. Vérifiez le paramétrage de Valeur haute d'échelle et de Valeur basse d'échelle. Voir la <i>Section 20.12</i>. Vérifiez l'ajustage de la sortie analogique. Voir la <i>Section 20.11</i>

Tableau 20-5: Problèmes de sortie impulsions et actions recommandées

Problème	Causes possibles	Actions recommandées
Mesure systématique- ment incorrecte sur la sortie analogique	 Problème de boucle Sortie mal ajustée Mauvaise unité de mesure du débit configurée Mauvaise grandeur mesurée configurée Mauvais réglage des valeurs haute et basse 	 Vérifiez l'ajustage de la sortie analogique. Voir la Section 20.11. Vérifiez que les unités de mesure sont configurées correctement pour votre application. Vérifiez la grandeur mesurée affectée à la sortie analogique. Vérifiez le paramétrage de Valeur haute d'échelle et de Valeur basse d'échelle. Voir la Section 20.12.
Sortie analogique cor- recte à bas courant, mais incorrecte à cou- rant plus élevé	Résistance de boucle sans doute trop éle- vée	 Assurez-vous que la résistance de boucle de la sortie analogique est inférieure à la valeur maximale spécifiée (voir le manuel d'installation du transmetteur).

Tableau 20-5: Problèmes de sortie impulsions et actions recommandées (suite)

20.6 Problèmes de sortie impulsions

Problème	Causes possibles	Actions recommandées
Pas de signal sur la sortie impulsions	 Totalisateur arrêté Le débit du fluide est inférieur au seuil de coupure bas débit Défaut si Action sur défaut est configuré sur Zéro interne ou sur Valeur basse Ecoulement biphasique Le fluide s'écoule dans la direction oppo- sée au sens d'écoulement configuré L'appareil raccordé à la sortie impulsions est défectueux Le niveau de la sortie n'est pas compati- ble avec le récepteur Circuit de sortie défectueux Mauvaise configuration d'alimentation de l'alimentation (interne ou externe) Mauvaise configuration de la largeur maximale d'impulsion La sortie n'est pas alimentée Problème de câblage 	 Vérifiez que les conditions du procédé sont inférieures au seuil de coupure bas débit. Re- configurez le seuil de coupure bas débit si nécessaire. Vérifiez les paramètres Action sur défaut. Voir la <i>Section 20.13</i>. Vérifiez que les totalisateurs ne sont pas ar- rêtés. Un totalisateur arrêté provoque un ver- rouillage de la sortie impulsions. Assurez-vous qu'il n'y a pas d'écoulement bi- phasique. Voir la <i>Section 20.20</i>. Vérifiez le sens d'écoulement. Voir la <i>Section 20.18</i>. Vérifiez le récepteur ainsi que le câblage en- tre le transmetteur et le récepteur. Vérifiez que la voie est câblée et configurée en tant que sortie impulsions. Vérifiez la configuration de l'alimentation de la sortie impulsions (interne ou externe). Vérifiez la largeur d'impulsion. Voir la <i>Section 20.15</i>. Effectuez un test de boucle. Voir la <i>Section 20.10</i>.
Mesure systématique- ment incorrecte sur la sortie impulsions	 Mauvaise mise à l'échelle de la sortie Mauvaise unité de mesure du débit configurée 	 Vérifiez le réglage de la sortie impulsions. Voir la Section 20.16. Vérifiez que les unités de mesure sont config- urées correctement pour votre application.

Tableau 20-6: Problèmes de sortie impulsions et actions recommandées

Problème	Causes possibles	Actions recommandées
Sortie impulsions er- ratique	Interférences électromagnétiques de l'environnement	Vérifiez qu'il n'y a pas d'interférences radio. Voir la <i>Section 20.14</i> .

radicaa mo or i rodicilies ac sortie illipaisions et activits recontinuataces jourte
--

20.7

Utilisation de la simulation de capteur pour le dépannage

Lorsque la simulation de capteur est activée, le transmetteur indique les valeurs spécifiées par l'utilisateur pour le débit massique, la température et la masse volumique. Cela permet de reproduire différentes conditions de procédé ou de tester le système.

Vous pouvez utiliser la simulation de capteur pour vous aider à faire la différence entre un bruit de procédé légitime et un bruit provoqué par une variation d'origine externe. Par exemple, imaginez qu'un récepteur indique une valeur de débit anormale. Si la simulation de capteur est activée et que le débit observé ne correspond pas à la valeur simulée, la source du problème est probablement située entre le transmetteur et le récepteur.

Important

Quand la simulation de capteur est active, la valeur simulée est utilisée pour tous les sorties de transmetteur et tous les calculs, y compris les compteurs et totalisateurs, les calculs de débit volumique et les calculs de concentration. Désactivez toutes les fonctions automatiques liées aux sorties de transmetteur et mettez la boucle en mode manuel. Avant d'activer le mode de simulation, assurez-vous que votre procédé tolérera ces effets, et pensez à désactiver ce mode une fois les tests terminés.

Pour plus d'informations sur l'utilisation de la simulation de capteur, voir Section 2.4.1.

20.8

8 Vérification du câblage de l'alimentation

Si le câblage de l'alimentation est endommagé ou mal raccordé, le transmetteur risque de ne pas recevoir suffisamment de courant électrique pour fonctionner correctement.

Prérequis

Vous aurez alors besoin du manuel d'installation du transmetteur.

Procédure

1. Avant d'inspecter le câblage de l'alimentation, déconnectez la source de courant.

ATTENTION !

Si le transmetteur est installé en atmosphère explosive, attendez cinq minutes.

2. Vérifiez le calibre du fusible externe.

Un fusible de calibre trop faible peut limiter le courant et empêcher l'initialisation du transmetteur.

3. Assurez-vous que les conducteurs d'alimentation sont raccordés aux bonnes bornes.

- 4. Vérifiez que les contacts sont bons au niveau des bornes et que les vis des bornes ne serrent pas sur la gaine isolante des conducteurs.
- 5. Remettez le transmetteur sous tension.

ATTENTION !

Si le transmetteur se trouve dans une zone dangereuse, ne le remettez pas sous tension si le couvercle du boîtier est retiré. Si vous remettez le transmetteur sous tension avec le couvercle du boîtier retiré, cela peut provoquer une explosion.

6. Mesurez la tension d'alimentation aux bornes du transmetteur.

Vérifiez qu'elle se trouve dans les limites spécifiées. S'il s'agit d'une alimentation à courant continu, il peut être nécessaire de calculer la taille des conducteurs en fonction de la distance.

20.9 Vérifier la mise à la terre

Le capteur et le transmetteur doivent tous deux être mis à la terre.

Prérequis

Vous aurez besoin :

- Du manuel d'installation du capteur
- Du manuel d'installation du transmetteur

Procédure

Consultez les manuels d'installation du capteur et du transmetteur pour les instructions de mise à la terre.

20.10 Effectuer des tests de boucle

Un test de boucle est un moyen de vérifier que le transmetteur et l'appareil à distance communiquent correctement. Un test de boucle permet également de déterminer si les sorties analogiques nécessite un ajustement.

20.10.1 Effectuer des tests de boucle à l'aide de ProLink II

Un test de boucle est un moyen de vérifier que le transmetteur et l'appareil à distance communiquent correctement. Un test de boucle permet également de déterminer si les sorties analogiques nécessite un ajustement.

Prérequis

Avant d'effectuer un test de boucle, configurez les voies d'entrée et de sortie du transmetteur qui devront être utilisées dans l'application.

Prendre les mesures nécessaires afin de s'assurer que les tests de boucle n'interfèrent pas avec les boucles de mesure et de régulation existantes.

ProLink II doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Testez la ou les sorties analogiques.
 - a. Choisissez ProLink > Test > Fixer Milliamp 2.
 - b. Saisissez 4 mA dans Régler la sortie sur.
 - c. Cliquez sur Fixer mA.
 - d. Mesurez le courant analogique à l'entrée du récepteur et comparez-le à celui de la sortie du transmetteur.

Il n'est pas nécessaire que les mesures correspondent exactement. Si les valeurs sont légèrement différentes, corrigez l'écart en ajustant la sortie.

- e. Cliquez sur Annuler fixer mA.
- f. Saisissez 20 mA dans Régler la sortie sur.
- g. Cliquez sur Fixer mA.
- h. Mesurez le courant analogique à l'entrée du récepteur et comparez-le à celui de la sortie du transmetteur.

Il n'est pas nécessaire que les mesures correspondent exactement. Si les valeurs sont légèrement différentes, corrigez l'écart en ajustant la sortie.

- i. Cliquez sur Annuler fixer mA.
- 2. Testez la ou les sorties impulsions.
 - a. Choisissez ProLink > Test > Fixer sortie impulsions.
 - b. Saisissez la valeur de sortie impulsions dans Régler la sortie sur.
 - c. Cliquez sur Fixer impulsion.
 - d. Mesurez le signal d'impulsions à l'entrée du récepteur et comparez-le à celui de sortie du transmetteur.
 - e. Cliquez sur Annuler fixer impulsion.
- 3. Testez la ou les sorties tout-ou-rien.
 - a. Choisissez ProLink > Test > Fixer sortie tout-ou-rien.
 - b. Sélectionnez Activé.
 - c. Vérifiez le signal à l'entrée du réception.
 - d. Sélectionnez Désactivé.
 - e. Vérifiez le signal à l'entrée du réception.
 - f. Cliquez sur Annuler fixer.

Postrequis

- Si la mesure de sortie analogique est légèrement décalée à l'entrée du récepteur, corrigez cet écart en ajustant la sortie.
- Si la mesure de sortie analogique est très décalée, ou si à une étape quelconque la mesure est erronée, vérifiez le câblage entre le transmetteur et l'appareil à distance et réessayez.
- Si la mesure de sortie tout-ou-rien est inversée, vérifiez le paramètre Polarité de sortie tout-ou-rien.

20.10.2 Effectuer des tests de boucle à l'aide de ProLink III

Un test de boucle est un moyen de vérifier que le transmetteur et l'appareil à distance communiquent correctement. Un test de boucle permet également de déterminer si les sorties analogiques nécessite un ajustement.

Prérequis

Avant d'effectuer un test de boucle, configurez les voies d'entrée et de sortie du transmetteur qui devront être utilisées dans l'application.

Prendre les mesures nécessaires afin de s'assurer que les tests de boucle n'interfèrent pas avec les boucles de mesure et de régulation existantes.

ProLink III doit être en cours d'exécution et connecté au transmetteur.

Procédure

- 1. Testez la ou les sorties analogiques.
 - a. Choisissez Outils de l'appareil > Diagnostics > Tests > Test de sortie analogique 2.
 - b. Saisissez 4 dans Fixer sur :.
 - c. Cliquez sur Fixer mA.
 - d. Mesurez le courant analogique à l'entrée du récepteur et comparez-le à celui de la sortie du transmetteur.

Il n'est pas nécessaire que les mesures correspondent exactement. Si les valeurs sont légèrement différentes, corrigez l'écart en ajustant la sortie.

- e. Cliquez sur Annuler fixer mA.
- f. Saisissez 20 dans Fixer sur :.
- g. Cliquez sur Fixer mA.
- h. Mesurez le courant analogique à l'entrée du récepteur et comparez-le à celui de la sortie du transmetteur.

Il n'est pas nécessaire que les mesures correspondent exactement. Si les valeurs sont légèrement différentes, corrigez l'écart en ajustant la sortie.

- i. Cliquez sur Annuler fixer mA.
- 2. Testez la ou les sorties impulsions.
 - a. Choisissez Outils de l'appareil > Diagnostics > Tests > Test de sortie impulsions.
 - b. Saisissez la valeur de sortie impulsions dans Fixer sur.
 - c. Cliquez sur Fixer FO.
 - d. Mesurez le signal d'impulsions à l'entrée du récepteur et comparez-le à celui de sortie du transmetteur.
 - e. Cliquez sur Annuler fixer FO.
- 3. Testez la ou les sorties tout-ou-rien.
 - a. Choisissez Outils de l'appareil > Diagnostics > Tests > Test de sortie tout-ou-rien.
 - b. Réglez Fixer sur : sur Activé.
 - c. Vérifiez le signal à l'entrée du réception.

- d. Réglez Fixer sur : sur Désactivé.
- e. Vérifiez le signal à l'entrée du réception.
- f. Cliquez sur Annuler fixer.
- 4. Testez l'entrée tout-ou-rien.
 - a. Réglez l'appareil d'entrée à distance sur Activé.
 - b. Choisissez Outils de l'appareil > Diagnostics > Tests > Test d'entrée tout-ou-rien.
 - c. Vérifiez le signal à l'entrée du transmetteur.
 - d. Réglez l'appareil d'entrée à distance sur Désactivé.
 - e. Vérifiez le signal à l'entrée du transmetteur.

Postrequis

- Si la mesure de sortie analogique est légèrement décalée à l'entrée du récepteur, corrigez cet écart en ajustant la sortie.
- Si la mesure de sortie analogique est très décalée, ou si à une étape quelconque la mesure est erronée, vérifiez le câblage entre le transmetteur et l'appareil à distance et réessayez.
- Si la mesure de sortie tout-ou-rien est inversée, vérifiez le paramètre Polarité de sortie tout-ou-rien.

20.10.3 Effectuer des tests de boucle à l'aide de PROFIBUS EDD

Un test de boucle est un moyen de vérifier que le transmetteur et l'appareil à distance communiquent correctement. Un test de boucle permet également de déterminer si les sorties analogiques nécessite un ajustement.

Prérequis

Avant d'effectuer un test de boucle, configurez les voies d'entrée et de sortie du transmetteur qui devront être utilisées dans l'application.

Prendre les mesures nécessaires afin de s'assurer que les tests de boucle n'interfèrent pas avec les boucles de mesure et de régulation existantes.

Vous devez disposer d'un outil de configuration PROFIBUS, le PROFIBUS EDD doit être installé, et vous devez être connecté au transmetteur.

Procédure

- 1. Testez la sortie analogique 2.
 - a. Choisissez Outils de service > Simuler > Test de boucle de sortie analogique.
 - b. Sélectionnez 4 mA et cliquez sur Suivant.
 - c. Mesurez le courant analogique à l'entrée du récepteur et comparez-le à celui de la sortie du transmetteur.

Il n'est pas nécessaire que les mesures correspondent exactement. Si les valeurs sont légèrement différentes, corrigez l'écart en ajustant la sortie.

- d. Cliquez sur Suivant.
- e. Sélectionnez 20 mA et cliquez sur Suivant.

f. Mesurez le courant analogique à l'entrée du récepteur et comparez-le à celui de la sortie du transmetteur.

Il n'est pas nécessaire que les mesures correspondent exactement. Si les valeurs sont légèrement différentes, corrigez l'écart en ajustant la sortie.

- g. Cliquez sur Suivant.
- h. Cliquez sur Terminer.
- 2. Testez la sortie impulsions.
 - a. Choisissez Outils de service > Simuler > Test de sortie impulsions.
 - b. Sélectionnez 10 kHz et cliquez sur Suivant.
 - c. Mesurez le signal d'impulsions à l'entrée du récepteur et comparez-le à celui de sortie du transmetteur.
 - d. Cliquez sur Suivant.
 - e. Cliquez sur Terminer.
- 3. Testez la sortie tout-ou-rien 1.
 - a. Choisissez Outils de service > Simuler > Sortie tout-ou-rien.
 - b. Sélectionnez Activé et cliquez sur Suivant.
 - c. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est activée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien.

- d. Cliquez sur Suivant.
- e. Sélectionnez Désactivé et cliquez sur Suivant.
- f. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est désactivée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien.

- g. Cliquez sur Suivant.
- h. Cliquez sur Terminer.
- 4. Testez la sortie tout-ou-rien de précision 1.
 - Choisissez Outils de service > Simuler > Test de sortie tout-ou-rien > Sortie tout-ou-rien de précision 1.
 - b. Sélectionnez Activé et cliquez sur Suivant.
 - c. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est activée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien de précision 1.

- d. Cliquez sur Suivant.
- e. Sélectionnez Désactivé et cliquez sur Suivant.
- f. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est désactivée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien de précision 1.

- g. Cliquez sur Suivant.
- h. Cliquez sur Terminer.

- 5. Testez la sortie tout-ou-rien de précision 2.
 - Choisissez Outils de service > Simuler > Test de sortie tout-ou-rien > Sortie tout-ou-rien de précision 2.
 - b. Sélectionnez Activé et cliquez sur Suivant.
 - c. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est activée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien de précision 2.

- d. Cliquez sur Suivant.
- e. Sélectionnez Désactivé et cliquez sur Suivant.
- f. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est désactivée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien de précision 2.

- g. Cliquez sur Suivant.
- h. Cliquez sur Terminer.

20.10.4 Effectuer des tests de boucle à l'aide des paramètres de bus PROFIBUS

Un test de boucle est un moyen de vérifier que le transmetteur et l'appareil à distance communiquent correctement. Un test de boucle permet également de déterminer si les sorties analogiques nécessite un ajustement.

Conseil

Les tests de boucle ne sont pas obligatoires. Néanmoins, Micro Motion préconise un test de boucle pour chaque entrée ou sortie disponible sur le transmetteur. Les entrées et sorties disponibles sur le transmetteur varient en fonction de l'option d'achat et de la configuration de la voie. Il est possible que vous ne puissiez pas effectuer tous les tests de boucle décrits ici.

Prérequis

Vous devez disposer d'un outil de configuration PROFIBUS prenant en charge les services de lecture et d'écriture DP-V1, et vous devez être connecté au transmetteur.

Avant d'effectuer un test de boucle, configurez les voies d'entrée et de sortie du transmetteur qui devront être utilisées dans l'application.

Prendre les mesures nécessaires afin de s'assurer que les tests de boucle n'interfèrent pas avec les boucles de mesure et de régulation existantes.

Procédure

- 1. Testez la sortie analogique 2.
 - a. Ecrire 4 dans le bloc de dosage, index 51.
 - b. Ecrire 1 dans le bloc de dosage, index 50.
 - c. Mesurez le courant analogique à l'entrée du récepteur et comparez-le à celui de la sortie du transmetteur.

Il n'est pas nécessaire que les mesures correspondent exactement. Si les valeurs sont légèrement différentes, corrigez l'écart en ajustant la sortie.

- d. Ecrire 20 dans le bloc de dosage, index 51.
- e. Ecrire 1 dans le bloc de dosage, index 50.
- f. Mesurez le courant analogique à l'entrée du récepteur et comparez-le à celui de la sortie du transmetteur.

Il n'est pas nécessaire que les mesures correspondent exactement. Si les valeurs sont légèrement différentes, corrigez l'écart en ajustant la sortie.

- g. Ecrire 0 dans le bloc de dosage, index 50.
- 2. Testez la ou les sorties impulsions.
 - a. Ecrire la valeur du test dans le bloc de dosage, index 68.
 - b. Ecrire 1 dans le bloc de dosage, index 67.
 - c. Mesurez le signal d'impulsions à l'entrée du récepteur et comparez-le à celui de sortie du transmetteur.
 - d. Ecrire 0 dans le bloc de dosage, index 67.
- 3. Testez la sortie tout-ou-rien 1.
 - a. Ecrire 1 dans le bloc de dosage, index 74.
 - b. Ecrire 1 dans le bloc de dosage, index 73.
 - c. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est activée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien.

- d. Ecrire 0 dans le bloc de dosage, index 74.
- e. Ecrire 1 dans le bloc de dosage, index 73.
- f. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est désactivée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien.

- g. Ecrire 0 dans le bloc de dosage, index 73.
- 4. Testez la sortie tout-ou-rien de précision 1.
 - a. Ecrire 1 dans le bloc de dosage, index 88.
 - b. Ecrire 1 dans le bloc de dosage, index 87.
 - c. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est activée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien de précision 1.

- d. Ecrire 0 dans le bloc de dosage, index 88.
- e. Ecrire 1 dans le bloc de dosage, index 87.
- f. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est désactivée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien de précision 1.

- g. Ecrire 0 dans le bloc de dosage, index 87.
- 5. Testez la sortie tout-ou-rien de précision 2.
 - a. Ecrire 1 dans le bloc de dosage, index 90.

- b. Ecrire 1 dans le bloc de dosage, index 89.
- c. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est activée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien de précision 2.

- d. Ecrire 0 dans le bloc de dosage, index 90.
- e. Ecrire 1 dans le bloc de dosage, index 89.
- f. Vérifiez le signal à l'entrée du réception.

La sortie tout-ou-rien est désactivée. La tension réelle est déterminée par le paramètre Polarité de la sortie tout-ou-rien de précision 2.

g. Ecrire 0 dans le bloc de dosage, index 89.

Postrequis

- Si la mesure de sortie analogique est légèrement décalée à l'entrée du récepteur, corrigez cet écart en ajustant la sortie.
- Si la mesure de sortie analogique est très décalée, ou si à une étape quelconque la mesure est erronée, vérifiez le câblage entre le transmetteur et l'appareil à distance et réessayez.
- Si la mesure de sortie tout-ou-rien est inversée, vérifiez le paramètre Polarité de sortie tout-ou-rien.

20.11 Ajuster les sorties analogiques

L'ajustage d'une sortie analogique étalonne la sortie analogique du transmetteur vers le récepteur. Si les valeurs d'ajustage actuelles ne sont pas exactes, le transmetteur sous- ou sur-compensera la sortie.

20.11.1 Ajuster les sorties analogiques à l'aide de ProLink II

L'ajustage de la sortie analogique permet de régler de façon précise la plage de courant de la sortie afin qu'elle corresponde à celle de l'entrée du récepteur.

Important

Il est important d'ajuster la sortie aux deux niveaux (4 mA et 20 mA) pour que le réglage couvre précisément toute la plage de courant.

Prérequis

Vérifiez que la sortie analogique est raccordée au récepteur utilisé en production.

Procédure

- 1. Choisissez ProLink > Etalonnage > Ajustage Milliamp 2.
- 2. Suivez les instructions de la méthode guidée.
- 3. Vérifiez les valeurs d'ajustage et contactez le service client de Micro Motion si un valeur est inférieure à −200 microamps ou supérieure à +200 microamps.

20.11.2 Ajuster les sorties analogiques à l'aide de ProLink III

L'ajustage de la sortie analogique permet de régler de façon précise la plage de courant de la sortie afin qu'elle corresponde à celle de l'entrée du récepteur.

Important

Il est important d'ajuster la sortie aux deux niveaux (4 mA et 20 mA) pour que le réglage couvre précisément toute la plage de courant.

Prérequis

Vérifiez que la sortie analogique est raccordée au récepteur utilisé en production.

Procédure

- Choisissez Device Tools > Calibration > MA Output Trim > mA Output 2 Trim.
- 2. Suivez les instructions de la méthode guidée.
- 3. Vérifiez les valeurs d'ajustage et contactez le service client de Micro Motion si un valeur est inférieure à −200 microamps ou supérieure à +200 microamps.

20.11.3 Ajuster les sorties analogiques à l'aide de PROFIBUS EDD

L'ajustage de la sortie analogique permet de régler de façon précise la plage de courant de la sortie afin qu'elle corresponde à celle de l'entrée du récepteur.

Important

Il est important d'ajuster la sortie aux deux niveaux (4 mA et 20 mA) pour que le réglage couvre précisément toute la plage de courant.

Prérequis

Vérifiez que la sortie analogique est raccordée au récepteur utilisé en production.

Procédure

- Choisissez Outils de service > Maintenance > Ajustage de sortie analogique.
- 2. Suivez les instructions de la méthode guidée.
- 3. Vérifiez les valeurs d'ajustage et contactez le service client de Micro Motion si un valeur est inférieure à −200 microamps ou supérieure à +200 microamps.

20.11.4 Ajuster les sorties analogiques à l'aide des paramètres de bus PROFIBUS

L'ajustage de la sortie analogique permet de régler de façon précise la plage de courant de la sortie afin qu'elle corresponde à celle de l'entrée du récepteur.

Important

Il est important d'ajuster la sortie aux deux niveaux (4 mA et 20 mA) pour que le réglage couvre précisément toute la plage de courant.

Prérequis

Vérifiez que la sortie analogique est raccordée au récepteur utilisé en production.

Procédure

- 1. Ajustez la sortie analogique 2 à 4 mA.
 - a. Ecrire 4 dans le bloc de dosage, index 51.
 - b. Ecrire 1 dans le bloc de dosage, index 53.
 - c. Mesurez le niveau de courant à l'entrée de l'appareil à distance.
 - d. Ecrivez le niveau de courant de l'étape précédente dans le bloc de dosage, index 52.
 - e. Ecrire 1 dans le bloc de dosage, index 53.
 - f. Mesurez le niveau de courant à l'entrée de l'appareil à distance.
 - g. Si la mesure du transmetteur est suffisamment proche de celle de l'appareil à distance, écrivez 0 dans le bloc de dosage, index 53. Continuez avec l'ajustage 20 mA.
 - h. Si la mesure du transmetteur n'est pas suffisamment proche de celle de l'appareil à distance, répétez les étapes 1c à 1e.
- 2. Ajustez la sortie analogique 2 à 20 mA.
 - a. Ecrire 1 dans le bloc de dosage, index 55.
 - b. Mesurez le niveau de courant à l'entrée de l'appareil à distance.
 - c. Ecrivez le niveau de courant de l'étape précédente dans le bloc de dosage, index 52.
 - d. Ecrire 1 dans le bloc de dosage, index 55.
 - e. Mesurez le niveau de courant à l'entrée de l'appareil à distance.
 - f. Si la mesure du transmetteur est suffisamment proche de celle de l'appareil à distance, écrivez 0 dans le bloc de dosage, index 53. L'ajustage est terminé.
 - g. Si la mesure du transmetteur n'est pas suffisamment proche de celle de l'appareil à distance, répétez les étapes 2c à 2e.
- 3. Vérifiez les valeurs d'ajustage et contactez le service client de Micro Motion si un valeur est inférieure à -200 microamps ou supérieure à +200 microamps.

20.12 Vérifier la Valeur basse d'échelle et la Valeur haute d'échelle

Si les conditions de procédé sont inférieures à la Valeur basse d'échelle (LRV) configurée ou supérieures à la Valeur haute d'échelle (URV), les sorties du transmetteur peuvent renvoyer des valeurs inattendues.

- 1. Notez les conditions de procédé actuelles.
- 2. Vérifiez la configuration de LRV et de URV.

20.13 Contrôler l'Action sur défaut de la sortie analogique

L'Action sur défaut de la sortie analogique détermine le comportement de la sortie analogique lorsque le transmetteur détecte un défaut de fonctionnement. Si la sortie analogique renvoie une valeur constante inférieure à 4 mA ou supérieure à 20 mA, il est possible que le transmetteur rencontre un défaut.

- 1. Contrôlez les alarmes d'état des défauts actifs.
- 2. Si aucun défaut n'est actif, cela signifie que le transmetteur fonctionne correctement. Pour modifier son comportement, prenez en compte les options suivantes :
 - Modifiez le paramètre Action sur défaut de la sortie analogique.
 - Pour connaître les alarmes d'état correspondantes, réglez la Gravité de l'alarme sur lgnorer.
- 3. Si aucun défaut n'est actif, poursuivez le diagnostic des dysfonctionnements.

20.14 Vérifier les interférences radio (RFI)

La sortie impulsions ou la sortie tout-ou-rien du transmetteur peut être affectée par des interférences radio (RFI). Les sources de RFI peuvent inclure une source d'émissions de radio ou un transformateur, une pompe ou un moteur qui peut générer un champ électromagnétique puissant. Plusieurs méthodes de réduction des RFI sont possibles. Utilisez une ou plusieurs des suggestions ci-dessous, selon votre installation.

Procédure

- Eliminez la source de RFI.
- Changez l'emplacement du transmetteur.
- Utilisez un câble blindé pour la sortie impulsions ou la sortie tout-ou-rien.
 - Reliez le blindage à l'appareil connecté à la sortie. Si cela n'est pas possible, reliez le blindage au presse-étoupe ou au raccord de conduit.
 - Le blindage du câble ne doit pas pénétrer à l'intérieur du compartiment de câblage du transmetteur.
 - Il n'est pas nécessaire d'assurer une terminaison du blindage sur 360 degrés.

20.15 Contrôler la Largeur maximum de la sortie impulsions

Si la Largeur maximum de la sortie impulsions n'est pas réglée correctement, la valeur de la sortie impulsions risque d'être erronée.

Vérifiez la configuration de la Largeur maximum de la sortie impulsions.

La valeur par défaut de la Largeur maximum de la sortie impulsions convient à la plupart des applications. Cela correspond à un rapport cyclique de 50 %.

20.16 Contrôler le Mode de réglage de la sortie impulsions

Si le Mode de réglage de la sortie impulsions n'est pas réglé correctement, la valeur de la sortie impulsions risque d'être erronée.

- 1. Vérifiez la configuration du Mode de réglage de la sortie impulsions.
- 2. En cas de modification du Mode de réglage de la sortie impulsions, vérifiez le réglage de tous les autres paramètres de sortie impulsions.

20.17 Contrôler l'Action sur défaut de la sortie impulsions

L'Action sur défaut de la sortie impulsions contrôle le comportement de la sortie impulsions lorsque le transmetteur détecte un défaut de fonctionnement. Si la sortie impulsions renvoie une valeur constante, il est possible que le transmetteur rencontre un défaut.

- 1. Contrôlez les alarmes d'état des défauts actifs.
- Si aucun défaut n'est actif, cela signifie que le transmetteur fonctionne correctement. Pour modifier son comportement, prenez en compte les options suivantes :
 - Modifiez le paramètre Action sur défaut de la sortie impulsions.
 - Pour connaître les alarmes d'état correspondantes, réglez la Gravité de l'alarme sur Ignorer.
- 3. Si aucun défaut n'est actif, poursuivez le diagnostic des dysfonctionnements.

20.18 Vérification du paramètre Sens d'écoulement

Si le paramètre Sens d'écoulement n'est pas réglé correctement pour votre procédé, le transmetteur risque d'indiquer des valeurs de débit ou des totaux inattendus. Le paramètre Sens d'écoulement interagit avec le sens d'écoulement effectif. Il affecte les valeurs de débit, les totalisateurs partiels et généraux de débit, et le comportement des sorties. Pour un fonctionnement le plus simple possible, le débit de procédé réel doit correspondre à la flèche de débit visible sur le côté du boîtier du capteur.

Procédure

- 1. Vérifiez le sens d'écoulement effectif du procédé à travers le capteur.
- 2. Vérifiez la configuration du paramètre Sens d'écoulement.

20.19 Contrôler les seuils de coupure

Si les seuils de coupure du transmetteur ne sont pas configurées de manière appropriée, le transmetteur peut signaler l'absence de débit alors qu'un débit est présent ou un débit très faible alors qu'il n'existe aucun débit.

Il existe différents paramètres de seuil de coupure du débit massique, le débit volumique, le débit volumique gazeux standard (si applicable) et la masse volumique. Il existe un seuil de coupure distinct pour chaque sortie mA du transmetteur. L'interaction entre les seuils de coupure génère parfois des résultats inattendus.

Procédure

Vérifiez la configuration des coupures.

Conseil

Pour les applications types, Micro Motion recommande de régler le paramètre Seuil de coupure du débit massique sur une valeur de stabilité du zéro pour le capteur multipliée par 10. Les valeurs de stabilité du zéro sont indiquées dans la Fiche technique du capteur.

20.20 Mise en évidence d'un écoulement biphasique

Un écoulement biphasique (gaz entraîné) peut provoquer des pointes de niveau d'excitation. Ces pointes peuvent conduire le transmetteur à indiquer des valeurs de débit nulles ou à générer différentes alarmes.

1. Assurez-vous qu'il n'y a pas d'alarmes d'écoulement biphasique.

Si le transmetteur ne génère pas d'alarmes d'écoulement biphasique, c'est que le problème n'est pas lié à un écoulement biphasique.

- 2. Vérifiez que le procédé n'est pas sujet à des problèmes de cavitation, de vaporisation ou de fuites.
- Surveillez la masse volumique de la sortie fluide procédé dans des conditions normales.
- 4. Vérifiez la valeur des paramètres Limite basse d'écoulement biphasique, Limite haute d'écoulement biphasique et Durée d'écoulement biphasique.

Conseil

Vous pouvez réduire la fréquence des alarmes d'écoulement biphasique en réglant Limite basse d'écoulement biphasique sur une valeur inférieure, Limite haute d'écoulement biphasique sur une valeur supérieure, ou Durée d'écoulement biphasique sur une valeur supérieure.

20.21 Vérification du niveau d'excitation

Un niveau d'excitation excessif ou erratique peut indiquer diverses conditions de procédé, ou des problèmes de capteur ou de configuration.

Pour savoir si le niveau d'excitation est excessif ou erratique, vous devez collecter les données d'excitation pendant le problème et les comparer aux données d'excitation de fonctionnement normal.

Niveau d'excitation excessif (saturé)

Tableau 20-7: Causes possibles et actions recommandées pour un niveau d'excitation excessif (saturé)

Cause possible	Actions recommandées
Ecoulement biphasique	Assurez-vous qu'il n'y a pas d'écoulement biphasique. Voir <i>Section 20.20</i> .
Tube de mesure partiellement rempli	Conditions de procédé correctes pour que les tubes de mesure soient remplis.

Cause possible	Actions recommandées
Tube de mesure colmaté	Vérifiez le niveau de détection (voir <i>Section 20.22</i>). Si l'un des ré- sultats est proche de zéro (mais qu'aucun n'est égal à zéro), le problème vient peut-être des tubes colmatés. Nettoyez les tubes de mesure. Dans les cas extrêmes, vous devrez peut-être re- mplacer le capteur.
Cavitation, clignotement ou entraînement d'air ; décanta- tion de fluides biphasés ou tri- phasés	 Augmentez la pression en amont ou la contre pression en aval du capteur. Si une pompe est installée en amont du capteur, augmentez la distance entre la pompe et le capteur. Le capteur doit peut-être être réorienté. Consultez le manuel d'installation du capteur pour connaître les orientations re- commandées.
Panne de l'électronique	Contactez Micro Motion.
Tube de mesure tordu	Vérifiez le niveau de détection (voir <i>Section 20.22</i>). Si l'un des ré- sultats est proche de zéro (mais qu'aucun n'est égal à zéro), le tube de mesure est peut-être tordu. Le capteur doit peut-être être remplacé.
Tube de mesure fissuré	Remplacez le capteur.
Déséquilibre du capteur	Contactez Micro Motion.
Contrainte mécanique au ni- veau du capteur	Assurez-vous que le capteur est libre de vibrer.
Bobine d'excitation ou de dé- tection coupée	Contactez Micro Motion.
Débit hors limites	Ramenez le débit dans les limites du capteur.
Mauvaise caractérisation du capteur	Vérifiez les paramètres de caractérisation.

Tableau 20-7: Causes possibles et actions recommandées pour un niveau d'excitation excessif (saturé) (suite)

Niveau d'excitation erratique

Tableau 20-8: Causes possibles et actions recommandées pour un niveau d'excitation erratique

Cause possible	Actions recommandées
Constante de caractérisation K1 du capteur er- ronée	Vérifiez les paramètres de caractérisation K1.
Polarité des fils de détection ou d'excitation inversée	Contactez Micro Motion.
Ecoulement biphasique	Assurez-vous qu'il n'y a pas d'écoulement biphasique. Voir <i>Section 20.20</i> .
Matière ou objet coincé dans les tubes de me- sure	Nettoyez les tubes de mesure.Remplacez le capteur.

20.21.1 Collecter des données de niveau d'excitation

ProLink II	ProLink > Diagnostic Information
ProLink III	Device Tools > Diagnostics > Core Processor Diagnostics
PROFIBUS EDD	Service Tools > Maintenance > Diagnostic Variables
PROFIBUS bus pa- rameters	Block: Diagnostics, Index 32

Vue d'ensemble

Les données de niveau d'excitation peuvent être utilisées pour diagnostiquer diverses conditions de procédé et de l'équipement. Collectez des données de niveau d'excitation pendant une période de fonctionnement normal, puis utilisez ces données comme référence pour le diagnostic des dysfonctionnements.

Procédure

- 1. Accédez aux données de niveau d'excitation.
- 2. Observez et enregistrez les données de niveau d'excitation sur une période de temps appropriée et dans diverses conditions de procédé.

20.22 Vérification du niveau de détection

Si les données de niveau de détection sont anormalement basses, votre procédé ou équipement rencontre peut-être des problèmes.

Pour déterminer si votre niveau de détection est anormalement bas, vous devez collecter les données de détection pendant le problème et les comparer aux données de détection de fonctionnement normal.

Cause possible	Actions recommandées
Entraînement d'air	 Augmentez la pression en amont ou la contre pression en aval du capteur. Si une pompe est installée en amont du capteur, augmen- tez la distance entre la pompe et le capteur. Le capteur doit peut-être être réorienté. Consultez le manuel d'installation du capteur pour connaître les orien- tations recommandées.
Câblage défectueux entre le cap- teur et le transmetteur	Vérifiez le câblage entre le capteur et le transmetteur
Débit du fluide procédé en dehors des limites du capteur	Vérifiez que le débit du fluide ne dépasse pas les limites du capteur.
Ecoulement biphasique	Assurez-vous qu'il n'y a pas d'écoulement biphasique. Voir <i>Section 20.20</i> .

Tableau 20-9: Causes possibles et actions recommandées pour un niveau de détection bas

Cause possible	Actions recommandées
Aucune vibration des tubes du capteur	 Vérifiez si les tubes sont colmatés. Assurez-vous que le capteur est libre de vibrer (pas de contrainte mécanique). Vérifiez le câblage.
Présence d'humidité dans l'élec- tronique du capteur	Eliminez l'humidité.
Le capteur est endommagé, ou les aimants du capteur sont démag- nétisés	Remplacez le capteur.

Tableau 20-9: Causes possibles et actions recommandées pour un niveau de détection bas (suite)

20.22.1 Collecter des données de tension de détection

ProLink II	ProLink > Diagnostic Information	
ProLink III	Device Tools > Diagnostics > Core Processor Diagnostics	
PROFIBUS EDD	Service Tools > Maintenance > Diagnostic Variables	
PROFIBUS bus pa-	Left pickoff voltage: Block: Diagnostics, Index 35	
rameters	Right pickoff voltage: Block: Diagnostics, Index 36	

Vue d'ensemble

Les données de tension de détection peuvent être utilisées pour diagnostiquer diverses conditions de procédé et de l'équipement. Collectez des données de tension de détection pendant une période de fonctionnement normal, puis utilisez ces données comme référence pour le diagnostic des dysfonctionnements.

Procédure

- 1. Accédez aux données de tension de détection.
- 2. Observez et enregistrez les données à la fois de détection gauche et droite, sur une période de temps appropriée et dans diverses conditions de procédé.

20.23 Vérification de court-circuit

Un court-circuit entre les bornes du capteur ou entre les bornes du capteur et le boîtier du capteur peut entraîner l'arrêt du capteur.

Tableau 20-10: Causes possibles de court-circuit et actions recommandées

Cause possible	Action recommandée
Humidité à l'intérieur de la boîte de jonction	Assurez-vous que l'intérieur de la boîte de jonction est sec et qu'il n'y a pas de corrosion.
Humidité ou liquide dans le boîtier du capteur	Contactez Micro Motion.
Cause possible	Action recommandée
---	--
Court-circuit au niveau du tube de passage	Contactez Micro Motion.
Câble de liaison défectueux	Remplacez le câble.
Mauvaise connexion d'un conducteur	Vérifiez la terminaison des conducteurs dans la boîte de jonction du capteur. Pour obtenir de l'aide, consultez le Micro Motion document intitulé <i>Guide de préparation et</i> <i>d'installation du câble à 9 conducteurs des débitmètres</i> .

Tableau 20-10: Causes possibles de court-circuit et actions recommandées (suite)

Annexe A Valeurs par défaut et plages de réglage

A.1 Valeurs par défaut et plages de réglage

Les valeurs par défaut et les plages de réglage composent la configuration d'usine type du transmetteur. Suivant la commande, certaines de ces valeurs peuvent avoir été configurées à l'usine et ne sont pas représentées par les valeurs par défaut et les plages de réglage. Ces valeurs s'appliquent également aux dosages contrôlés par vanne externe. Pour les valeurs par défaut appliquées aux dosages contrôlés par vanne externe, voir *Section 5.2.1*.

Туре	Paramètre	Valeur par dé- faut	Plage	Commentaires
Débit	Sens d'écoulement	Normal		
	Amortissement du débit	0,04 sec	0,0 à 40,96 sec	La valeur entrée par l'utilisateur est ramenée vers le bas à la va- leur la plus proche dans une liste de valeurs prédéfinies. Pour les applications de dosage, Micro Motion recommande de con- server la valeur par défaut.
	Unités de débit massique	g/s		
	Seuil bas débit massique	0,0 g/s		Réglage recommandé : 5 % du débit maximum du capteur.
	Unités de débit volumique	L/s		
	Seuil bas débit volumique	0/0 L/s	0,0 – x L/s	x est obtenu en multipliant le co- eff. d'étal. en débit par 0,2, en utilisant le L/s comme unité.
Facteurs de	Facteur masse	1		
débitmétrie	Facteur masse volumique	1		
	Facteur volume	1		
Masse volumi- que	Amortissement masse volumi- que	1,28 sec	0,0 à 40,96 sec	La valeur entrée par l'utilisateur est ramenée à la valeur la plus proche dans une liste de valeurs prédéfinies.
	Unités de masse volumique	g/cm ³		
	Seuil de coupure de la masse vol- umique	0,2 g/cm ³	0,0 à 0,5 g/cm ³	
	D1	0		
	D2	1		

Tableau A-1: Valeurs par défaut et plages de réglage du transmetteur

Туре	Paramètre	Valeur par dé- faut	Plage	Commentaires
	К1	1 000		
	К2	50 000,00		
	FD	0		
	Coefficient de température	4,44		
Ecoulement bi- phasique	Limite basse d'écoulement bi- phasique	0,0 g/cm ³	0,0 à 10,0 g/cm ³	
	Limite haute d'écoulement bi- phasique	5,0 g/cm ³	0,0 à 10,0 g/cm ³	
	Durée d'écoulement biphasique	0,0 sec	0,0 à 60,0 s	
Température	Amortissement température	4,8 sec	0,0 à 38,4 s	La valeur entrée par l'utilisateur est ramenée vers le bas à la va- leur la plus proche dans une liste de valeurs prédéfinies.
	Unités de température	Degré C		
	Coefficient d'étalonnage en température	1.00000T0.00 00		
Pression	Unités de pression	PSI		
	Facteur débit	0		
	Facteur masse volumique	0		
	Pression d'étalonnage	0		
Unités spé-	Unité de masse de base	g		
ciales (1)	Temps de masse de base	s		
	Fact. de conv. débit masse	1		
	Unité de volume de base	L		
	Temps volume de base	S		
	Fact. de conv. débit volume	1		
Sortie analogi- que	Variable secondaire	Débit massi- que		
	Point bas d'échelle (LRV)	-200,00000 g/s		
	Point haut d'échelle (URV)	200,00000 g/s		
	Seuil bas sortie analogique	0,00000 g/s		
	Amort. supplémentaire de sortie analogique	0,00000 sec		
	Portée limite inférieure (LSL)	–200 g/s		Non modifiable.
	Portée limite supérieure (USL)	200 g/s		Les portées limites inférieure (LSL) et supérieure (USL) sont calculées en fonction de la taille du capteur et des paramètres de caractérisation.

Tableau A-1: Valeurs par défaut et plages de réglage du transmetteur (suite)

(1) Non pris en charge par le bus de terrain PROFIBUS-DP

Туре	Paramètre	Valeur par dé- faut	Plage	Commentaires
	Plage minimum	0,3 g/s		Non modifiable.
	Forçage sur défaut	Valeur basse		
	Niveau de défaut de sortie ana- logique (val. basse)	2,0 mA	0,0 à 3,6 mA	
	Niveau de défaut de sortie ana- logique (val. haute)	22 mA	21,0 à 24,0 mA	
	Temporisation dernière valeur mesurée	0,00 sec		
Point bas	Débit massique	-200,000 g/s		
d'échelle (LRV)	Débit volumique	-0,200 L/s		
	Masse volumique	0,000 g/cm ³		
	Température	−240,000 °C		
	Niveau d'excitation	0,000 %		
	Débit volumique de gaz aux con- ditions de base	-423,78 Sft3/ min		
	Température externe	−240,000 °C		
	Pression externe	0,000 psi		
Point haut	Débit massique	200,000 g/s		
d'échelle (URV)	Débit volumique	0,200 L/s		
	Masse volumique	10,000 g/cm ³		
	Température	450,000 °C		
	Niveau d'excitation	100,000 %		
	Débit volumique de gaz aux con- ditions de base	423,78 Sft3/ min		
	Température externe	450,000 °C		
	Pression externe	100,000 psi		
Sortie de fré- quence	Variable tertiaire	Débit massi- que		
	Valeur de fréquence	1 000,00 Hz	0,00091 à 10 000,00 Hz	
	Facteur de débit	16 666,66992 g/s		
	Largeur maximum d'impulsion	0 (rapport cy- clique de 50 %)	0,01 à 655,35 ms	
	Mode de réglage de l'échelle	Fréq = Débit		
	Action sur défaut de fréquence	Valeur basse		
	Niveau de défaut de fréquence (val. haute)	15 000 Hz	10,0 à 15 000 Hz	
	Front d'impulsion	Niveau haut actif		

Tableau A-1: Valeurs par défaut et plages de réglage du transmetteur (suite)

Туре	Paramètre	Valeur par dé- faut	Plage	Commentaires
	Temporisation dernière valeur mesurée	0,0 secondes	0,0 à 60,0 s	
Sortie TOR	Affectation	Erreur		
	Indicateur de défaillance	Aucun		
	Energie électrique	Interne		
	Polarité	Niveau haut actif		
Entrée TOR	Affectation	Aucun		
	Polarité	Niveau bas ac- tif		

Tableau A-1: Valeurs par défaut et plages de réglage du transmetteur (suite)

Annexe B Utilisation de ProLink II avec le transmetteur

Sujets couverts dans cette annexe:

- Informations de base sur ProLink II
- Arborescences de menus de ProLink II

B.1 Informations de base sur ProLink II

ProLink II est un outil logiciel Micro Motion. Il fonctionne sur la plate-forme Windows et permet d'accéder à l'ensemble des fonctionnalités et des données du transmetteur.

ProLink II conditions requises

Le transmetteur requiert ProLink II v2.91 ou ultérieur.

Pour installer ProLink II, vous devez avoir à votre disposition :

- les supports d'installation de ProLink II ;
- le kit d'installation ProLink II correspondant à votre type de connexion.

Pour obtenir ProLink II et le kit d'installation approprié, contactez Micro Motion.

ProLink II documentation

La plupart des instructions de ce manuel se fondent sur l'hypothèse que vous vous êtes déjà familiarisé avec ProLink II ou que vous avez une connaissance générale des programmes Windows. Si vous avez besoin de plus d'informations que ce que ce manuel contient, consultez le manuel de ProLink II (Logiciel ProLink[®] II pour transmetteurs Micro Motion[®] : manuel d'installation et d'utilisation).

Dans la plupart des installations ProLink II, le manuel est installé avec le programme ProLink II. En outre, le manuel de ProLink II est disponible sur le CD de documentation de Micro Motion ou sur le site Web de Micro Motion (www.micromotion.com).

ProLink II caractéristiques et fonctions

ProLink II intègre un éventail complet de fonctions de configuration et d'exploitation de transmetteurs. ProLink II offre aussi un certain nombre de fonctions et de possibilités supplémentaires, parmi lesquelles :

- La possibilité d'enregistrer le jeu de configuration de transmetteur dans un fichier sur le PC, puis de recharger ce fichier et de le propager sur d'autres transmetteurs
- La possibilité de consigner dans un journal stocké sur le PC des types de données spécifiques
- Un assistant de mise en service
- Un assistant d'épreuvage
- Un assistant gaz

Ces fonctions sont présentées dans le manuel de ProLink II. Elles ne sont pas expliquées dans le présent manuel.

ProLink II messages

Si vous utilisez ProLink II avec un transmetteur Micro Motion, vous verrez un certain nombre de messages et de notes. Ce manuel ne contient pas d'informations à ce sujet.

Important

Il incombe à l'utilisateur de répondre à ces messages et de se conformer aux messages de sécurité.

B.2 Arborescences de menus de ProLink II

Figure B-3: Menu de fonctionnement du dosage

Annexe C Configuration et utilisation des interfaces PROFIBUS

Sujets couverts dans cette annexe:

- Fonctionnalité PROFIBUS-DP prise en charge par le transmetteur
- Options de communications PROFIBUS
- Arborescence des menus de PROFIBUS EDD
- Configurer le GSD
- Utiliser les paramètres de bus PROFIBUS

C.1 Fonctionnalité PROFIBUS-DP prise en charge par le transmetteur

Le transmetteur fonctionne comme un nœud PROFIBUS-DP standard, et peut être intégré à tous les réseaux PROFIBUS-DP standards.

Le transmetteur prend en charge la fonctionnalité PROFIBUS-DP suivante :

- Débits de réseau : le transmetteur détecte automatiquement le débit du réseau et répond à tous les débits en bauds compris entre 9,6 kbit/s et 12,0 Mbit/s
- Mode de communication avec le maître :
 - Cyclique
 - Acyclique
- Méthodes de configuration :
 - Adresse de nœud via commutateurs physiques
 - Description du dispositif (EDD) conforme aux dispositions suivantes : spécification pour la description de dispositif et l'intégration de dispositif PROFIBUS : Volume 2 : EDDL V1.2, décembre 2005
 - Services DP-V1 d'écriture et de lecture avec les paramètres de bus PROFIBUS
- Méthodes d'utilisation :
 - GSD conforme aux dispositions suivantes : spécification pour la description de dispositif et l'intégration de dispositif PROFIBUS : Volume 1 : GSD V5.1, juillet 2008
 - Services cycliques DP-V0
 - Description de dispositif indiquée ci-dessus
 - Services DP-V1 d'écriture et de lecture (MS1 et MS2) avec les paramètres de bus PROFIBUS
- Fonctions d'identification et de maintenance (I&M) précisées dans Instructions de profil, 1ere partie : Fonctions d'identification & de maintenance Version 1.2, octobre 2009:
 - I&M0

- I&M1

C.2 Options de communications PROFIBUS

Le transmetteur prend en charge les services DP-V0 et DP-V1. Les paramètres pris en charge par les services DP-V0 sont un sous-ensemble des paramètres pris en charge par les services DP-V1. De manière générale, les services DP-V1 sont utilisés pour l'étalonnage et le dépannage du transmetteur.

Types de communications	Option d'interface	Fonctions
Cyclique	GSD (Description de station générique)	 Récupération des alarmes et des grandeurs mesurées Blocage, activation et remise à zéro des totalisateurs Envoi des données de température et de pression externe au transmetteur
Acyclique	EDD (Description de disposi- tif améliorée)	 Visualisation des alarmes et des grandeurs mesurées Blocage, activation et remise à zéro des totalisateurs Configuration du transmetteur Visualisation des états d'évènements Etalonnage en température, densité et incertitude de mesure
	Paramètres du bus de ter- rain	Configuration, fonctionnement et interface de mainte- nance complets

Tableau C-1: Méthodes de communications PROFIBUS

C.3 Arborescence des menus de PROFIBUS EDD

Figure C-9: Menu d'outils d'application

C.4 Configurer le GSD

Le GSD prend en charge les communications cycliques (échange d'informations automatique et périodique) entre le transmetteur et un hôte PROFIBUS à l'aide de modules d'entrée et de sortie prédéfinis. Vous pouvez sélectionner vingt modules maximum.

- 1. Téléchargez le fichier suivant sur le site Web d'Emerson : MMI_0C7E.GSD
 - a. Utilisez votre navigateur pour accéder à http://micromotion.com.
 - b. Dans la liste Liens rapides, cliquez sur Téléchargements logiciels, puis accédez à la page Pilotes d'appareils.
 - c. Accédez au kit d'installation d'appareil correspondant à votre transmetteur, sélectionnez le GSD, puis téléchargez-le sur votre ordinateur.
- 2. Importez le GSD sur votre hôte PROFIBUS.
- 3. Configurez l'hôte avec l'adresse de noeud du transmetteur et les autres informations requises.

Conseil

L'adresse de nœud du transmetteur a été définie pendant l'installation du transmetteur. Voir *Micro Motion Filling Mass Transmitters: Installation Manual* pour plus d'informations.

- 4. Selon la méthode appropriée à votre hôte, sélectionnez les modules d'entrée et de sortie que vous souhaitez utiliser, jusqu'à un maximum de vingt modules.
- 5. Selon la méthode appropriée à votre hôte, lancez des communications cycliques.

C.4.1 Modules d'entrée dans le GSD

Des modules d'entrée sont utilisés pour envoyer des données de processus ou de diagnostic à l'hôte. Chaque module d'entrée est associé à une variable de processus ou de diagnostic sur le transmetteur. Lorsqu'un hôte effectue une mesure cyclique, il obtient la valeur actuelle de la variable.

Nom du module	Taille (octets)	Commentaires
État de l'appareil	1	Bonnes données
		Mauvaises données
Débit massique	4	
Total partiel en masse	4	
Température	4	
Masse volumique	4	
Débit volumique	4	
Total partiel en volume	4	
Niveau d'excitation	4	
SNS STATUS WORD1	2	Voir tableau ci-après.
SNS STATUS WORD2	2	Voir tableau ci-après.
SNS STATUS WORD3	2	Voir tableau ci-après.
SNS STATUS WORD4	2	Voir tableau ci-après.
SNS STATUS WORD5	2	Voir tableau ci-après.
SNS STATUS WORD6	2	Voir tableau ci-après.
SNS STATUS WORD7	2	Voir tableau ci-après.
Total dosé	4	
Durée dosage actuel	4	
Nombre de dosages	2	
Pourcentage du dosage complété	4	
Mot d'état du dosage	2	
Mot de diagnostic du dosage	2	

Tableau C-2: Modules d'entrée dans le GSD

Tableau C-3: Descriptions des bits pour STATUSWORD1

Hexadécimal	Bit	Description
0x0001	0	Non utilisé
0x0002	1	Non utilisé
0x0004	2	Non utilisé
0x0008	3	Aucune réponse du capteur
0x0010	4	Non utilisé
0x0020	5	Non utilisé
0x0040	6	Autre panne
0x0080	7	Non utilisé

Hexadécimal	Bit	Description
0x0100	8	Non utilisé
0x0200	9	Non utilisé
0x0400	10	Simulation du capteur activée
0x0800	11	Non utilisé
0x1000	12	Non utilisé
0x2000	13	Non utilisé
0x4000	14	Non utilisé
0x8000	15	Erreur

Tableau C-3: Descriptions des bits pour STATUSWORD1 (suite)

Tableau C-4: Descriptions des bits pour STATUSWORD2

Hexadécimal	Bit	Description
0x0001	0	Non utilisé
0x0002	1	Non utilisé
0x0004	2	Non utilisé
0x0008	3	Non utilisé
0x0010	4	Masse volumique hors limites
0x0020	5	Excitation hors limites
0x0040	6	Défaut de communication PIC/carte fille
0x0080	7	Non utilisé
0x0100	8	Erreur EEPROM (platine processeur)
0x0200	9	Erreur RAM (platine processeur)
0x0400	10	Non utilisé
0x0800	11	Température hors limites
0x1000	12	Débit massique hors limites
0x2000	13	Non utilisé
0x4000	14	Caractérisation requise
0x8000	15	Non utilisé

Tableau C-5: Descriptions des bits pour STATUSWORD3

Hexadécimal	Bit	Description
0x0001	0	Non utilisé
0x0002	1	Coupure d'alimentation
0x0004	2	Initialisation du transmetteur/ Mise en tempéra- ture
0x0008	3	Non utilisé
0x0010	4	Non utilisé
0x0020	5	Non utilisé

Hexadécimal	Bit	Description
0x0040	6	Non utilisé
0x0080	7	Non utilisé
0x0100	8	Échec de l'étalonnage
0x0200	9	Échec de l'ajustage du zéro : débit faible
0x0400	10	Échec de l'ajustage du zéro : débit excessif
0x0800	11	Échec de l'ajustage du zéro : débit instable
0x1000	12	Panne du transmetteur
0x2000	13	Non utilisé
0x4000	14	Étalonnage en cours
0x8000	15	Écoulement biphasique

Tableau C-5: Descriptions des bits pour STATUSWORD3 (suite)

Tableau C-6: Descriptions des bits pour STATUSWORD4

Hexadécimal	Bit	Description
0x0001	0	Non utilisé
0x0002	1	Non utilisé
0x0004	2	Panne de la sonde de température
0x0008	3	Panne de la sonde de température de série T
0x0010	4	Écoulement inverse
0x0020	5	Données de configuration d'usine invalides
0x0040	6	Non utilisé
0x0080	7	Dépassement de la dernière valeur mesurée ac- tivé
0x0100	8	Non utilisé
0x0200	9	Aucune valeur d'étalonnage en débit
0x0400	10	Non utilisé
0x0800	11	Non utilisé
0x1000	12	Aucune valeur K1
0x2000	13	Non utilisé
0x4000	14	Non utilisé
0x8000	15	Non utilisé

Tableau C-7: Descriptions des bits pour STATUSWORD5

Hexadécimal	Bit	Description
0x0001	0	Non utilisé
0x0002	1	Non utilisé
0x0004	2	Non utilisé
0x0008	3	Non utilisé

Hexadécimal	Bit	Description
0x0010	4	État de la sortie tout-ou-rien
0x0020	5	Non utilisé
0x0040	6	Étalonnage en masse volumique D3 en cours
0x0080	7	Étalonnage en masse volumique D4 en cours
0x0100	8	Non utilisé
0x0200	9	Non utilisé
0x0400	10	Étalonnage de la pente en temp. en cours
0x0800	11	Étalonnage du décalage en temp. en cours
0x1000	12	Étalonnage en masse volumique FD en cours
0x2000	13	Étalonnage en masse volumique D2 en cours
0x4000	14	Étalonnage en masse volumique D1 en cours
0x8000	15	Etalonnage du zéro en cours

Tableau C-7: Descriptions des bits pour STATUSWORD5 (suite)

Tableau C-8: Descriptions des bits pour STATUSWORD6

Hexadécimal	Bit	Description
0x0001	0	Non utilisé
0x0002	1	Non utilisé
0x0004	2	Non utilisé
0x0008	3	Non utilisé
0x0010	4	Non utilisé
0x0020	5	Non utilisé
0x0040	6	Non utilisé
0x0080	7	Non utilisé
0x0100	8	État de l'évènement avancé 1 (index = 0)
0x0200	9	État de l'évènement avancé 2 (index = 1)
0x0400	10	État de l'évènement avancé 3 (index = 2)
0x0800	11	État de l'évènement avancé 4 (index = 3)
0x1000	12	État de l'évènement avancé 5 (index = 4)
0x2000	13	Non utilisé
0x4000	14	Non utilisé
0x8000	15	Type de carte incorrect

Tableau C-9: Descriptions des bits pour STATUSWORD7

Hexadécimal	Bit	Description
0x0001	0	Combinaison inconnue K1/FCF
0x0002	1	Initialisation du transmetteur/ Mise en tempéra- ture

Hexadécimal	Bit	Description
0x0004	2	Tension d'alimentation trop faible
0x0008	3	Signal de détecteur droit/gauche
0x0010	4	Non utilisé
0x0020	5	Non utilisé
0x0040	6	Non utilisé
0x0080	7	Non utilisé
0x0100	8	Non utilisé
0x0200	9	Non utilisé
0x0400	10	Non utilisé
0x0800	11	Non utilisé
0x1000	12	Non utilisé
0x2000	13	Non utilisé
0x4000	14	Non utilisé
0x8000	15	Non utilisé

Tableau C-9: Descriptions des bits pour STATUSWORD7 (suite)

C.4.2 Modules de sortie dans le GSD

Les modules de sortie sont utilisés pour envoyer des données externes au transmetteur ou initier des actions du transmetteur. Lorsque l'hôte effectue une écriture cyclique, il écrit la valeur actuelle du module de sortie à destination de la mémoire du transmetteur.

Nom du module	Taille (octets)	Commentaires
Activation/blocage totalisations	1	0 = Arrêter1 = Démarrer
Remise à zéro des totaux de processus	1	 0 = Aucune action 1 = Effectuer action
Remise à zéro des totaux généraux	1	 0 = Aucune action 1 = Effectuer action
Démarrage du dosage	1	 0 = Aucune action 1 = Effectuer action
Interruption du dosage	1	 0 = Aucune action 1 = Effectuer action
Redémarrage du dosage	1	 0 = Aucune action 1 = Effectuer action
Arrêt du dosage	1	 0 = Aucune action 1 = Effectuer action
RAZ total dosé	1	 0 = Aucune action 1 = Effectuer action
Démarrage du dosage secondaire	1	 0 = Aucune action 1 = Effectuer action

Tableau C-10: Modules de sortie dans le GSD

Nom du module	Taille (octets)	Commentaires
Arrêt du dosage secondaire	1	 0 = Aucune action 1 = Effectuer action
Démarrage de la purge	1	 0 = Aucune action 1 = Effectuer action
Arrêt de la purge	1	 0 = Aucune action 1 = Effectuer action
Démarrage du nettoyage	1	 0 = Aucune action 1 = Effectuer action
Arrêt du rinçage	1	 0 = Aucune action 1 = Effectuer action
RAZ du débit d'ajustage	1	 0 = Aucune action 1 = Effectuer action

Tableau C-10: Modules de sortie dans le GSD (suite)

C.4.3 Contenu des octets de diagnostic 11 à 24

Pendant les communications cycliques, le transmetteur affiche un drapeau pour indiquer qu'une ou plusieurs alertes sont survenues. L'hôte lit les octets de diagnostic pour déterminer les alarmes spécifiques. Si un octet est défini, une ou plusieurs des alarmes correspondantes sont actives.

Remarque

Les octets de diagnostic 11 à 24 contiennent des données spécifiques au dispositif. Le contenu des octets de diagnostic 1 à 10 sont définis dans la spécification PROFIBUS. Pour plus d'informations sur les octets de diagnostic 1 à 10, voir la spécification PROFIBUS.

Tal	bleau	C-11:	Octet de	diagnost	tic 11

Bit	Alarmes actives (une ou plus)
24	A014 : Panne du transmetteur
25	Réservé
26	Réservé
27	Réservé
28	A001 : Erreur EEPROM (platine processeur)
	A002 : Erreur RAM (platine processeur)
29	A003 : Aucune réponse du capteur
	A004 : Température hors limites
	A005 : Débit massique hors limites
	A008 : Masse volumique hors limites
	A016 : Panne de la sonde de température
	A017 : Panne de la sonde de température de série T
30	A009 : Initialisation/mise en température du transmetteur
31	Réservé

Bit	Alarmes actives (une ou plus)
32	A010 : Echec de l'étalonnage
	A011 : Echec de l'ajustage du zéro : débit faible
	A012 : Echec de l'ajustage du zéro : débit excessif
	A013 : Echec de l'ajustage du zéro : débit instable
33	Réservé
34	Réservé
35	A107 : Coupure d'alimentation
36	A107 : Coupure d'alimentation
37	Réservé
38	A006 : Caractérisation requise
	A020 : Aucune valeur d'étalonnage en débit
	A021 : Type de capteur incorrect (K1)
39	Réservé

Tableau C-12: Octet de diagnostic 12

Tableau C-13:Octet de diagnostic 13

Bit	Alarmes actives (une ou plus)
40	Réservé
41	Réservé
42	Réservé
43	Réservé
44	Réservé
45	Réservé
46	Réservé
47	Réservé

Tableau C-14: Octet de diagnostic 14

Bit	Alarmes actives (une ou plus)
48	Réservé
49	Réservé
50	Réservé
51	Réservé
52	Réservé
53	Réservé
54	Réservé
55	Réservé

Tableau C-15: Octet de diagnostic 15

Bit	Alarmes actives (une ou plus)
56	Réservé
57	A001 : Erreur EEPROM (platine processeur)
58	A002 : Erreur RAM (platine processeur)
59	A003 : Aucune réponse du capteur
60	A004 : Température hors limites
61	A005 : Débit massique hors limites
62	A006 : Caractérisation requise
63	Réservé

Tableau C-16:Octet de diagnostic 16

Bit	Alarmes actives (une ou plus)
64	A008 : Masse volumique hors limites
65	A009 : Initialisation/mise en température du transmetteur
66	A010 : Echec de l'étalonnage
67	A011 : Echec de l'ajustage du zéro : débit faible
68	A012 : Echec de l'ajustage du zéro : débit excessif
69	A013 : Echec de l'ajustage du zéro : débit instable
70	A014 : Panne du transmetteur
71	Réservé

Tableau C-17: Octet de diagnostic 17

Bit	Alarmes actives (une ou plus)
72	A016 : Panne de la sonde de température
73	A017 : Panne de la sonde de température de série T
74	Réservé
75	Réservé
76	A020 : Aucune valeur d'étalonnage en débit
77	A021 : Type de capteur incorrect (K1)
78	Réservé
79	Réservé

Tableau C-18:Octet de diagnostic 18

Bit	Alarmes actives (une ou plus)
80	Réservé
81	Réservé
82	Réservé

Bit	Alarmes actives (une ou plus)
83	Réservé
84	Réservé
85	A029 : Défaut de communication PIC/carte fille
86	A030 : Type de carte incorrect
87	A031 : Tension d'alimentation faible

Tableau C-18: Octet de diagnostic 18 (suite)

Tableau C-19: Octet de diagnostic 19

Bit	Alarmes actives (une ou plus)
88	Réservé
89	A033 : Signal de détecteur droit/gauche insuffisant
90	Réservé
91	Réservé
92	Réservé
93	Réservé
94	Réservé
95	Réservé

Tableau C-20: Octet de diagnostic 20

Bit	Alarmes actives (une ou plus)
96	Réservé
97	Réservé
98	A102 : Excitation hors limites
99	Réservé
100	A105 : Ecoulement biphasique
101	A105 : Ecoulement biphasique
102	Réservé
103	A107 : Coupure d'alimentation

Tableau C-21: Octet de diagnostic 21

Bit	Alarmes actives (une ou plus)
104	Réservé
105	Réservé
106	Réservé
107	Réservé
108	Réservé
109	Réservé

Bit	Alarmes actives (une ou plus)
110	Réservé
111	Réservé

Tableau C-21: Octet de diagnostic 21 (suite)

Tableau C-22:Octet de diagnostic 22

Bit	Alarmes actives (une ou plus)
112	Réservé
113	Réservé
114	Réservé
115	Réservé
116	Réservé
117	Réservé
118	Réservé
119	Réservé

Tableau C-23: Octet de diagnostic 23

Bit	Alarmes actives (une ou plus)
120	Réservé
121	Réservé
122	Réservé
123	Réservé
124	Réservé
125	Réservé
126	Réservé
127	Réservé

Tableau C-24:Octet de diagnostic 24

Bit	Alarmes actives (une ou plus)		
128	A132 : Simulation du capteur activée		
129	Réservé		
130	Réservé		
131	Réservé		
132	Réservé		
133	Réservé		
134	Réservé		
135	Réservé		

C.5 Utiliser les paramètres de bus PROFIBUS

Les paramètres de bus PROFIBUS offrent une interface complète pour l'ensemble des fonctionnalités du transmetteur disponibles via le port DP. Vous pouvez utiliser les paramètres de bus pour configurer le transmetteur, faire fonctionner le transmetteur et exécuter des opérations de maintenance.

Prérequis

Votre hôte PROFIBUS ou environnement de gestion doit être compatible avec les services DP-V1.

Procédure

1. Selon la méthode appropriée à votre environnement, établissez une connexion avec le transmetteur.

Conseil

L'adresse de nœud du transmetteur a été définie pendant l'installation du transmetteur. Voir Micro Motion Filling Mass Transmitters: Installation Manual pour plus d'informations.

2. Utilisez les services DP-V1 pour lire et/ou écrire des valeurs dans des paramètres du transmetteur spécifiques.

C.5.1 Types de données PROFIBUS

Les types de données suivantes sont utilisées dans l'interface des paramètres de bus PROFIBUS.

Type de données	Taille (oc- tets)	Description	Plage	Code
Boolean	1	Vrai/faux	0 = Faux	BOOL
			1 = Vrai	
Integer8	1	Valeur d'entier 8 bit signée	-128 à +127	INT8
Unsigned8	1	Valeur d'entier 8 bit non signée	0 à 255	UINT8
Integer16	2	Valeur d'entier 16 bit signée	-32 768 à +32 767	INT16
Unsigned16	2	Valeur d'entier 16 bit non signée	0 à 65 535	UINT16
Integer32	4	Valeur d'entier 32 bit signée	-2 147 483 648 à	INT32
			+2 147 483 647	
Unsigned32	4	Valeur d'entier 32 bit non signée	0 à 4 294 967 296	UINT32
FLOAT	4	Valeur à virgule flottante de sim- ple précision IEEE	-3,8e38 à +3,8e38	FLOAT
OCTET STRING	Jusqu'à 128 octets	Ensemble de caractères ASCII	SO	STRING
BIT_ENUMER- ATED	2	Valeur énumérée dans laquelle chaque bit représente une énu- mération différente	SO	B_ENUM

Tableau C-25: Types de données PROFIBUS

C.5.2 Bloc de mesure PROFIBUS (emplacement 1) et informations liées

Dans le tableau suivant :

Index	L'index du paramètre dans le bloc					
Nom	Le n	Le nom utilisé pour le paramètre dans le bloc				
Type de données	Le t	ype de données du paramètre				
Classe de mémoire	La c	lasse de mémoire du paramètre :				
	D	 Stockage dynamique (données cycliques, paramètre mis à jour périodiquement) 				
	S	Stockage statique (données acycliques, paramètre modifié)				
	Ν	 Paramètre non-volatile (enregistré entre les cycles d'alimentation) 				
Accès	Le type d'accès autorisé pour ce paramètre :					
	ROLecture seuleRWLecture/Ecriture					
Valeur par défaut	Valeur configurée en usine, à moins qu'une configuration particulière ait été commandée					
Commentaires	Définition rapide du paramètre, nom du paramètre dans ProLink II, ou informations concernant le paramètre					

	Tableau C-26:	Contenu du	bloc de mesure
--	---------------	------------	----------------

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
4	SNS_MassFlow	FLOAT	D	RO	0	Valeur actuelle du débit massique du procédé
5	SNS_MassFlowUnits	UINT16	S	RW	0x0526 (1318)	Unité de mesure du déb- it massique (code des entiers ; voir <i>Tableau C-27</i>)
6	SNS_Temperature	FLOAT	D	RO	0	Valeur actuelle de la température du procédé
7	SNS_TemperatureUnits	UINT16	S	RW	0x03E9 (1001)	Unité de mesure de la température (code des entiers ; voir <i>Tableau C-29</i>)
8	SNS_Density	FLOAT	D	RO	0	Valeur actuelle de la vari- able de masse volumi- que du procédé
9	SNS_DensityUnits	UINT16	S	RW	0x044C (1100)	Unité de mesure de la masse volumique (code des entiers ; voir <i>Tableau C-30</i>)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
10	SNS_VolFlow	FLOAT	D	RO	0	Valeur actuelle de la vari- able du débit volumique du procédé
11	SNS_VolumeFlowUnits	UINT16	S	RW	0x0547 (1351)	Unité de mesure du déb- it volumique (code des entiers ; voir <i>Tableau C-31</i>)
12	SNS_DampingFlowRate	FLOAT	S	RW	0,04	Valeur d'amortissement du débit (0,0 à 60,0 s)
13	SNS_DampingTemp	FLOAT	S	RW	4,8	Valeur d'amortissement de la température (0,0 à 80,0 s)
14	SNS_DampingDensity	FLOAT	S	RW	1,6	Valeur d'amortissement de la masse volumique (0,0 à 60,0 s)
15	SNS_MassMeterFactor	FLOAT	S	RW	1	Facteur d'ajustage en masse (0,8 à 1,2)
16	SNS_DensMeterFactor	FLOAT	S	RW	1	Facteur de densimètre (0,8 à 1,2)
17	SNS_VolMeterFactor	FLOAT	S	RW	1	Facteur d'ajustage en volume (0,8 à 1,2)
18	SNS_MassFlowCutoff	FLOAT	S	RW	0	Seuil de coupure bas débit massique (de 0 à la limite du capteur)
19	SNS_VolumeFlowCutoff	FLOAT	S	RW	0	Seuil de coupure bas débit volumique (de 0 à la limite du capteur)
20	SNS_LowDensityCutoff	FLOAT	S	RW	0	Seuil de coupure masse volumique (de 0,0 à 0,5)
21	SNS_FlowDirection	UINT16	S	RW	0	Sens d'écoulement (code des entiers ; voir <i>Tableau C-33</i>)
22	SNS_StartStopTotals	UINT16	S	RW	SO	 0 = Arrêter les totali- sateurs 1 = Démarrer les to- talisateurs
23	SNS_ResetAllTotal	UINT16	S	RW	SO	 0 = Aucune action 1 = Effectuer action
24	SNS_ResetAll Inventories	UINT16	S	RW	SO	 0 = Aucune action 1 = Effectuer action
25	SNS_ResetMassTotal	UINT16	S	RW	SO	 0 = Aucune action 1 = Effectuer action
26	SNS_ResetLineVolTotal	UINT16	S	RW	SO	 0 = Aucune action 1 = Effectuer action

Tableau C-26: Contenu du bloc de mesure (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
27	SNS_MassTotal	FLOAT	D	RO	0	Valeur actuelle du total partiel en masse
28	SNS_VolTotal	FLOAT	D	RO	0	Valeur actuelle du total partiel en volume
29	SNS_MassInventory	FLOAT	D	RO	0	Valeur actuelle du total général en masse
30	SNS_VolInventory	FLOAT	D	RO	0	Valeur actuelle du total général en volume
31	SNS_MassTotalUnits	UINT16	S	RO	0x0441 (1089)	Unité de mesure du total partiel et du total génér- al en masse (code des entiers ; voir <i>Tableau C-28</i>)
32	SNS_VolTotalUnits	UINT16	S	RO	0x040E (1038)	Unité de mesure du total partiel et du total génér- al en volume (code des entiers ; voir Tableau C-32)
33	SNS_ResetMassInv	UINT16	S	RW	0	 0 = Aucune action 1 = Effectuer action
34	SNS_ResetVolInv	UINT16	S	RW	0	 0 = Aucune action 1 = Effectuer action

Tableau C-26:	Contenu du	ı bloc de	mesure (suite)
---------------	------------	-----------	----------------

Tableau C-27: Codes des entiers pour le paramètre Unité de mesure du débit massique

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Aucun
0x0526	1318	Grammes / seconde
0x0527	1319	Grammes / minute
0x0528	1320	Grammes / heure
0x052A	1322	Kilogrammes / seconde
0x052B	1323	Kilogrammes / minute
0x052C	1324	Kilogrammes / heure
0x052D	1325	Kilogrammes / jour
0x052F	1327	Tonnes métriques / minute
0x0530	1328	Tonnes métriques / heure
0x0531	1329	Tonnes métriques / jour
0x0532	1330	Livres / seconde
0x0533	1331	Livres / minute
0x0534	1332	Livres / heure
0x0535	1333	Livres / jour
0x0537	1335	Tonnes courtes (US, 2 000 livres) / minute

Code (hexadécimal)	Code (décimal)	Description
0x0538	1336	Tonnes courtes (US, 2 000 livres) / heure
0x0539	1337	Tonnes courtes (US, 2 000 livres) / jour
0x053C	1340	Tonnes fortes (UK, 2 240 livres) / heure

Tableau C-27: Codes des entiers pour le paramètre Unité de mesure du débit massique (suite)

Tableau C-28: Codes des entiers pour unité de mesure du total partiel et du total
général en masse

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Aucun
0x0440	1088	Kilogrammes
0x0441	1089	Grammes
0x0444	1092	Tonnes métriques
0x0446	1094	Livres
0x0447	1095	Tonnes courtes (US, 2 000 livres)
0x0448	1096	Tonnes fortes (UK, 2 240 livres)

Tableau C-29: Codes des entiers pour le paramètre Unité de mesure de la température

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Aucun
0x03E8	1000	Kelvin
0x03E9	1001	Degrés Celsius
0x03EA	1002	Degrés Fahrenheit
0x03EB	1003	Degrés Rankine

Tableau C-30: Codes des entiers pour le paramètre Unité de mesure de masse volumique

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Aucun
0x0449	1097	Kilogrammes par mètre cube
0x044C	1100	Grammes par centimètre cube
0x044F	1103	Kilogrammes par litre
0x0450	1104	Grammes par millilitre
0x0451	1105	Grammes par litre
0x0452	1106	Livres par pouce cube
0x0453	1107	Livres par pied cube
0x0454	1108	Livres par gallon US
0x0455	1109	Tonnes courtes (US, 2 000 livres) par yard cube
0x0459	1113	Degrés API

()		
Code (hexadécimal)	Code (décimal)	Description
0x045A	1114	Densité

Tableau C-30: Codes des entiers pour le paramètre Unité de mesure de masse volumique (suite)

Tableau C-31: Codes des entiers pour le paramètre Unité de mesure du débit volumique

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Aucun
0x0543	1347	Mètres cube / seconde
0x0544	1348	Mètres cube / minute
0x0545	1349	Mètres cube / heure
0x0546	1350	Mètres cube / jour
0x0547	1351	Litres / seconde
0x0548	1352	Litres / minute
0x0549	1353	Litres / heure
0x054B	1355	Millions de litres / jour
0x054C	1356	Pieds cube / seconde
0x054D	1357	Pieds cube / minute
0x054E	1358	Pieds cube / heure
0x054F	1359	Pieds cube / jour
0x0552	1362	Gallons US / seconde
0x0553	1363	Gallons US / minute
0x0554	1364	Gallons US / heure
0x0555	1365	Millions de gallons US / jour
0x0556	1366	Gallons impériaux / seconde
0x0557	1367	Gallons impériaux / minute
0x0558	1368	Gallons impériaux / heure
0x0559	1369	Gallonx impériaux / jour
0x055A	1370	Barils / seconde
0x055B	1371	Barils / minute
0x055C	1372	Barils / heure
0x055D	1373	Barils / jour
0x055E	1374	Barils de bière par sec (Beer bbl/s)
0x066A	1642	Barils de bière par min (Beer bbl/min)
0x066B	1643	Barils de bière par heure (Beer bbl/h)
0x066C	1644	Barils de bière par jour (Beer bbl/j)
0x066D	1645	Gallons US par jour
Code (hexadécimal)	Code (décimal)	Description
--------------------	----------------	--------------------------
0x0000	0	Aucun
0x040A	1034	Mètres cube
0x040C	1036	Centimètres cube
0x040E	1038	Litres
0x0413	1043	Pieds cube
0x0418	1048	Gallons US
0x0419	1049	Gallons impériaux (U.K.)
0x041B	1051	Barils
0x0669	1641	Barils de bière

Tableau C-32: Codes des entiers pour unité de mesure du total partiel et du total
général en volume

Tableau C-33: Codes des entiers pour le paramètre Sens d'écoulement

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Normal
0x0002	2	Bidirectionnel
0x0004	4	Invers. numér. / normal
0x0005	5	Inversion numérique / bidirectionnel

C.5.3

3 Bloc d'étalonnage PROFIBUS (emplacement 2) et informations liées

Dans le tableau suivant :

Index	L'index du paramètre dans le bloc					
Nom	Le n	Le nom utilisé pour le paramètre dans le bloc				
Type de données	Le t	ype de données du paramètre				
Classe de mémoire	La c	La classe de mémoire du paramètre :				
	D	D Stockage dynamique (données cycliques, paramètre mis à jour périodiquement)				
	S	Stockage statique (données acycliques, paramètre modifié)				
	Ν	Paramètre non-volatile (enregistré entre les cycles d'alimentation)				
Accès	Let	ype d'accès autorisé pour ce paramètre :				
	RO	Lecture seule				
	RV	V Lecture/Ecriture				
Valeur par défaut	Vale part	eur configurée en usine, à moins qu'une configuration iculière ait été commandée				
Commentaires	Défi ou i	Définition rapide du paramètre, nom du paramètre dans ProLink II, ou informations concernant le paramètre				

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
4	SNS_FlowCalGain	FLOAT	S	RW	1	Coefficient d'étalonnage en débit (chaîne de 6 caractères)
5	SNS_FlowCalTemp Coeff	FLOAT	S	RW	5,13	Coefficient de tempéra- ture en débit (chaîne de 4 caractères)
6	SNS_FlowZeroCal	UINT16	S	RW	SO	 0 = Stopper l'étalon- nage au zéro 1 = Démarrer l'éta- lonnage au zéro
7	SNS_MaxZeroingTime	UINT16	S	RW	20	Temps zéro Plage : 5 à 300 secondes
8	SNS_AutoZeroStdDev	FLOAT	S	RO	SO	Ecart type de l'ajustage du zéro
9	SNS_AutoZeroValue	FLOAT	S	RW	SO	Décalage actuel du sig- nal primaire à débit nul, en μs
10	SNS_FailedCal	FLOAT	S	RO	Varie	Valeur zéro en cas d'échec de l'étalonnage
11	SNS_K1Cal	UINT16	5	RW	SO	Démarrer l'étalonnage en masse volumique D1 : • 0 = Aucune action • 1 = Effectuer action
12	SNS_K2Cal	UINT16	S	RW	SO	Démarrer l'étalonnage en masse volumique D2 : • 0 = Aucune action • 1 = Effectuer action
13	SNS_FdCal	UINT16	S	RW	SO	Démarrer l'étalonnage en masse volumique à haut débit : • 0 = Aucune action • 1 = Effectuer action
14	SNS_TseriesD3Cal	UINT16	S	RW	SO	Démarrer l'étalonnage en masse volumique D3 : • 0 = Aucune action • 1 = Effectuer action
15	SNS_TseriesD4Cal	UINT16	S	RW	SO	Démarrer l'étalonnage en masse volumique D4 : • 0 = Aucune action • 1 = Effectuer action
16	SNS_K1	FLOAT	S	RW	1 000	Constante d'étalonnage en masse volumique 1 (µs)
17	SNS_K2	FLOAT	S	RW	50 000	Constante d'étalonnage en masse volumique 2 (μs)

Tableau C-34: Contenu du bloc d'étalonnage

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
18	SNS_FD	FLOAT	S	RW	0	Constante d'étalonnage en masse volumique à haut débit (µs)
19	SNS_TseriesK3	FLOAT	S	RW	0	Constante d'étalonnage en masse volumique 3 (μs)
20	SNS_TseriesK4	FLOAT	S	RW	0	Constante d'étalonnage en masse volumique 4 (µs)
21	SNS_D1	FLOAT	S	RW	0	Masse volumique du flu- ide d'étalonnage D1
22	SNS_D2	FLOAT	S	RW	1	Masse volumique du flu- ide d'étalonnage D2
23	SNS_CalValForFD	FLOAT	S	RW	0	Masse volumique du flu- ide d'étalonnage de den- sité
24	SNS_TseriesD3	FLOAT	S	RW	0	Masse volumique du flu- ide d'étalonnage D3
25	SNS_TseriesD4	FLOAT	S	RW	0	Masse volumique du flu- ide d'étalonnage D4
26	SNS_DensityTempCoeff	FLOAT	S	RW	4,44	Coefficient de tempéra- ture en masse volumi- que
27	SNS_TSeriesFlowTGCO	FLOAT	S	RW	0	Coefficient FTG du cap- teur Série T
28	SNS_TSeriesFlowFQCO	FLOAT	S	RW	0	Coefficient FFQ du cap- teur Série T
29	SNS_TSeriesDensTGCO	FLOAT	S	RW	0	Coefficient DTG du cap- teur Série T
30	SNS_TSeriesDensFQCO1	FLOAT	S	RW	0	Coefficient DFQ1 du cap- teur Série T
31	SNS_TSeriesDensFQCO2	FLOAT	S	RW	0	Coefficient DFQ2 du cap- teur Série T
32	SNS_TempCalOffset	FLOAT	S	RW	0	Coeff d'étalonnage en température : décalage
33	SNS_TempCalSlope	FLOAT	S	RW	1	Pente du coefficient d'étalonnage en tempér- ature
36	SNS_EnablePresComp	ENUM	S	RW	0	Compensation de press- ion : • 0 = Désactivé • 1 = Activé
37	SNS_ExternalPresInput	FLOAT	S	RW	0	Valeur de pression ex- terne

Tableau C-34: Contenu du bloc d'étalonnage (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
38	SNS_PressureUnits	UINT16	S	RW	0x0475 (1141)	Unité de mesure de la pression (code des en- tiers ; voir <i>Tableau C-35</i>)
39	SNS_FlowPresComp	FLOAT	S	RW	0	Facteur d'influence de la pression sur le débit
40	SNS_DensPresComp	FLOAT	S	RW	0	Facteur d'influence de la pression sur la masse volumique
41	SNS_FlowCalPres	FLOAT	S	RW	0	Pression d'étalonnage en débit
42	SNS_FlowZeroRestore	UINT16	S	RW	SO	Rétablir l'ajustage d'usine : • 0 = Aucune action • 1 = Effectuer action
43	SNS_AutoZero Factory	FLOAT	S	RO	Varie	Valeur d'usine du déca- lage du signal primaire à débit nul, en µs

Tableau C-34:	Contenu	du bloc	d'étalon	nage (suite)
---------------	---------	---------	----------	--------------

Tableau C-35: Codes des entiers pour le paramètre Unité de mesure de pression

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Aucun
0x047C	1148	Pouces d'eau à 68 °F
0x047A	1146	Pouces d'eau à 60 °F
0x0484	1156	Pouces de mercure à 0 °C
0x0482	1154	Pieds d'eau à 68 °F
0x047F	1151	Millimètres d'eau à 68 °F
0x0486	1158	Millimètres de mercure à 0 °C
0x0475	1141	Livre / pouce carré
0x0471	1137	Bar
0x0472	1138	Millibar
0x0478	1144	Gramme / centimètre carré
0x0479	1145	Kilogramme / centimètre carré
0x046A	1130	Pascal
0x046D	1133	Kilopascal
0x0473	1139	Torr @ 0 °Celsius
0x0474	1140	Atmosphères
0x047B	1147	Pouces d'eau à 4 °C
0x047E	1150	Millimètres d'eau à 4 °C
0x046C	1132	Mégapascal

C.5.4 Bloc de diagnostic PROFIBUS (emplacement 3) et informations liées

Dans le tableau suivant :

Index	L'ind	L'index du paramètre dans le bloc				
Nom	Le n	Le nom utilisé pour le paramètre dans le bloc				
Type de données	Le t	ype de données du paramètre				
Classe de mémoire	La c	lasse de mémoire du paramètre :				
	D	D Stockage dynamique (données cycliques, paramètre mis à jour périodiquement)				
	S	Stockage statique (données acycliques, paramètre modifié)				
	Ν	Paramètre non-volatile (enregistré entre les cycles d'alimentation)				
Accès	Le t	ype d'accès autorisé pour ce paramètre :				
	RO	Lecture seule				
	RV	Lecture/Ecriture				
Valeur par défaut	Vale part	Valeur configurée en usine, à moins qu'une configuration particulière ait été commandée				
Commentaires	Défi ou i	inition rapide du paramètre, nom du paramètre dans ProLink II. nformations concernant le paramètre				

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
1	SNS_SlugDuration	FLOAT	S	RW	1	Durée d'écoulement biphasi- que : • Unité : secondes • Plage : 0 à 60 secondes
2	SNS_SlugLo	FLOAT	S	RW	0	Limite basse d'écoulement biphasique : • Unité : g/cm3 • Plage : 0 à 10 g/cm3
3	SNS_SlugHi	FLOAT	S	RW	5	Limite haute d'écoulement bi- phasique : • Unité : g/cm3 • Plage : 0 à 10 g/cm3
4	UNI_PCIndex	UINT16	S	RW	0	Évènement avancé (évènement TOR) index (x = 0, 1, 2, 3, 4)
5	SNS_PC_Action	UINT16	S	RW	0	Type d'évènement avancé pour l'évène- ment avancé x (code des entiers ; voir <i>Tableau C-37</i>)

Tableau C-36: Contenu du bloc de diagnostic

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
6	SNS_PC_SetPointA	FLOAT	S	RW	1	Valeur de seuil A pour l'évènement avancé x
7	SNS_PC_SetPointB	FLOAT	S	RW	1	Valeur de seuil B pour l'évènement avancé x
8	SNS_PC_PVCode	UINT16	S	RW	0	Variable de processus pour l'évènement avancé x (code des en- tier ; voir <i>Tableau C-38</i>)
9	SNS_PC_Status	B_ENUM	D	RO	SO	État d'évènement avancé (code des en- tiers ; voir <i>Tableau C-39</i>)
10	SNS_StatusWords1	B_ENUM	D	RO	SO	Voir tableau ci-après.
11	SNS_StatusWords2	B_ENUM	D	RO	SO	Voir tableau ci-après.
12	SNS_StatusWords3	B_ENUM	D	RO	SO	Voir tableau ci-après.
13	SNS_StatusWords4	B_ENUM	D	RO	SO	Voir tableau ci-après.
14	SNS_StatusWords5	B_ENUM	D	RO	SO	Voir tableau ci-après.
15	SNS_StatusWords6	B_ENUM	D	RO	SO	Voir tableau ci-après.
16	SNS_StatusWords7	B_ENUM	D	RO	SO	Voir tableau ci-après.
17	SNS_StatusWords8	B_ENUM	D	RO	SO	Non utilisé
18	SYS_DigCommFault Ac- tionCode	UINT16	S	RW	0	Action sur défaut de commu- nication numérique (code des entiers ; voir Tableau C-47)
19	DB_SYS_TimeoutVa- lueLMV	UINT16	5	RW	0	Temporisation du forçage sur défaut : • Plage : 0 à 60 secondes
20	UNI_Alarm_Index	UINT16	S	RW	0	Index d'alarme utilisé pour configurer ou lire le niveau de gravité des alarmes, ou pour acquit- ter les alarmes
21	SYS_AlarmSeverity	UINT16	S	RW	0	Gravité de l'alarme pour l'alarme n (pour n, voir l'index d'alarme) (code des entiers ; voir <i>Tableau C-48</i>)
22	SYS_AlarmStatus	B_ENUM	D	RW	SO	État de l'alarme pour l'alarme n (pour n, voir l'index d'alarme) (code des entiers ; voir <i>Tableau C-49</i>) Pour acquitter l'alarme, écrire 0.

 Tableau C-36:
 Contenu du bloc de diagnostic (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
23	SYS_AlarmCount	UINT16	5	RO	SO	Nombre de transitions inactive/active de l'alarme n (pour n, voir l'index d'alarme)
24	SYS_AlarmPosted	UINT32	S	RO	SO	Heure à laquelle l'alarme n est apparue, indiquée sous la forme du nombre de secondes depuis la ré- initialisation de la durée sous tension (Index 52) (pour n, voir l'index de l'alarme)
25	SYS_AlarmCleared	UINT32	S	RO	SO	Heure à laquelle l'alarme n a disparu, indiquée sous la forme du nombre de secondes depuis la ré- initialisation de la durée sous tension (Index 52) (pour n, voir l'index de l'alarme)
26	UNI_AlarmHistoryIndex	UINT16	S	RW	SO	Index de l'historique des alarmes • Plage : 0 à 49
27	SYS_AlarmNumber	UINT16	S	RO	SO	Numéro d'alarme sous n dans l'historique des alarmes (pour n, voir l'in- dex de l'historique des alarmes)
28	SYS_AlarmEvent	UINT16	5	RO	SO	 Changement d'état sous n dans l'historique des alarmes (pour n, voir l'in- dex de l'historique des alarmes) 1 = Apparition de l'alarme 2 = Disparition de l'alarme
29	SYS_AlarmTime	UINT32	S	RO	SO	Horodatage du change- ment d'état sous n dans l'historique des alarmes (pour n, voir l'index de l'historique des alarmes)
30	SYS_AckAllAlarms	UINT16	S	RW	SO	Acquit général des alarmes : • 0 = Aucune action • 1 = Effectuer action

Tableau C-36: Contenu du bloc de diagnostic (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
31	SYS_ClearAlarmHistory	UINT16	S	RW	SO	 Type de changement d'état pour n dans l'his- torique des alarmes (pour n, voir l'index de l'historique des alarmes) 1 = Apparition de l'alarme 2 = Disparition de l'alarme
32	SNS_DriveGain	FLOAT	D	RO	0	Niveau d'excitation ac- tuel : • Unité : %
33	SNS_RawTubeFreq	FLOAT	D	RO	0	Fréquences actuelle des tubes : • Unité : Hz
34	SNS_LiveZeroFlow	FLOAT	D	RO	0	 Valeur non filtrée du débit massique : Unité : unité config- urée pour la vitesse d'écoulement
35	SNS_LPOamplitude	FLOAT	D	RO	0	Niveau de détection gauche : • Unité : volt
36	SNS_RPOamplitude	FLOAT	D	RO	0	Niveau de détection droit : • Unité : volt
37	SNS_BoardTemp	FLOAT	D	RO	0	Température carte : • Unité : °C
38	SNS_MaxBoardTemp	FLOAT	D	RO	0	Température maximum enregistrée de l'électro- nique (réinitialisable) : • Unité : °C
39	SNS_MinBoardTemp	FLOAT	D	RO	0	Température minimum enregistrée de l'électro- nique (réinitialisable) : • Unité : °C
40	SNS_AveBoardTemp	FLOAT	D	RO	0	Température moyenne enregistrée de l'électro- nique (non réinitialisa- ble) : • Unité : °C
41	SNS_MaxSensorTemp	FLOAT	D	RO	0	Température maximum enregistrée du capteur : • Unité : °C

Tableau C-36: Contenu du bloc de diagnostic (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
42	SNS_MinSensorTemp	FLOAT	D	RO	0	Température minimum enregistrée du capteur : • Unité : °C
43	SNS_AveSensorTemp	FLOAT	D	RO	0	Température moyenne enregistrée du capteur : • Unité : °C
44	SNS_WireRTDRes	FLOAT	D	RO	0	Résistance du câble à 9 conducteurs • Unité : ohm
45	SNS_LineRTDRes	FLOAT	D	RO	0	Résistance de la sonde de température du cap- teur : • Unité : ohm
46	SYS_PowerCycleCount	UINT16	D	RO	0	Compteur de coupures d'alimentation de la platine processeur/du transmetteur
47	SYS_PowerOnTimeSec	UINT32	D	RO	SO	Nombre de secondes depuis la dernière remise à zéro du transmetteur (mise hors puis sous ten- sion)
48	SNS_InputVoltage	FLOAT	D	RO	SO	Tension d'alimentation Corilolis (mesure in- terne), ~12 VDC: • Unité : volt
49	SNS_TargetAmplitude	FLOAT	D	RO	SO	Amplitude cible à la- quelle le transmetteur essaye d'exciter le cap- teur : • Unité : mV/Hz
50	SNS_CaseRTDRes	FLOAT	D	RO	SO	Résistance Pt100 boîti- er : • Unité : ohm
51	SYS_RestoreFactoryCon- fig	UINT16	S	RW	SO	 Rétablir les valeurs de la configuration d'usine : 0 = Aucune action 1 = Effectuer action
52	SYS_ResetPowerOnTime	UINT16	S	RW	SO	 Réinitialisation de la durée sous tension : 0 = Aucune action 1 = Effectuer action

Tableau C-36: Contenu du bloc de diagnostic (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
56	SYS_AckAlarm	UINT16	S	RW	SO	Acquit des alarmes (en- trer l'index d'une alarme pour l'acquitter) : (1 = A001,, 39 = A039, 40 = A100,, 75 = A135,)
57	SNS_DriveCurrent	FLOAT	D	RO	SO	Courant utilisé pour ex- citer le capteur : • Unité : mA

Tableau C-36: Contenu du bloc de diagnostic (suite)

Tableau C-37: Codes des entiers pour le Type d'évènement avancé

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	HI (supérieur à la valeur de seuil A)
0x0001	1	LO (inférieur à la valeur de seuil A)
0x0002	2	IN HI/LO (entre les points de seuil A et B comp- ris)
0x0003	3	IN HI/LO (non compris entre les points de seuil A et B, non compris)

Tableau C-38: Codes des entiers pour la Variable de processus d'évènement avancé

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Débit massique
0x0001	1	Température
0x0002	2	Total partiel en masse
0x0003	3	Masse volumique
0x0004	4	Total général en masse
0x0005	5	Débit volumique
0x0006	6	Total partiel en volume
0x0007	7	Total général en volume
0x002E	46	Fréquence de tube brute
0x002F	47	Niveau d'excitation
0x0030	48	Température du boîtier
0x0031	49	Ampl. détect. gche
0x0032	50	Ampl. détec. droit
0x0033	51	Température de la carte
0x0035	53	Pression externe
0x0037	55	Température externe
0x0045	69	Mesure zéro

Tableau C-38: Codes des entiers pour la Variable de processus d'évènement avancé (suite)

Code (hexadécimal)	Code (décimal)	Description
0x00FB	251	Aucun

Tableau C-39: Codes des entiers pour l'État d'évènement avancé

Code (hexadécimal)	Code (décimal)	Description
0x0000	1	Évènement avancé 1 actif (index = 0)
0x0002	2	Évènement avancé 2 actif (index = 1)
0x0004	4	Évènement avancé 3 actif (index = 2)
0x0008	8	Évènement avancé 4 actif (index = 3)
0x0010	16	Évènement avancé 5 actif (index = 4)

Tableau C-40: Descriptions des bits pour STATUSWORD1

Hexadécimal	Bit	Description
0x0001	0	Non utilisé
0x0002	1	Non utilisé
0x0004	2	Non utilisé
0x0008	3	Aucune réponse du capteur
0x0010	4	Non utilisé
0x0020	5	Non utilisé
0x0040	6	Autre panne
0x0080	7	Non utilisé
0x0100	8	Non utilisé
0x0200	9	Non utilisé
0x0400	10	Simulation du capteur activée
0x0800	11	Non utilisé
0x1000	12	Non utilisé
0x2000	13	Non utilisé
0x4000	14	Non utilisé
0x8000	15	Erreur

Tableau C-41: Descriptions des bits pour STATUSWORD2

Hexadécimal	Bit	Description
0x0001	0	Non utilisé
0x0002	1	Non utilisé
0x0004	2	Non utilisé
0x0008	3	Non utilisé
0x0010	4	Masse volumique hors limites

Hexadécimal	Bit	Description
0x0020	5	Excitation hors limites
0x0040	6	Défaut de communication PIC/carte fille
0x0080	7	Non utilisé
0x0100	8	Erreur EEPROM (platine processeur)
0x0200	9	Erreur RAM (platine processeur)
0x0400	10	Non utilisé
0x0800	11	Température hors limites
0x1000	12	Débit massique hors limites
0x2000	13	Non utilisé
0x4000	14	Caractérisation requise
0x8000	15	Non utilisé

Tableau C-41: Descriptions des bits pour STATUSWORD2 (suite)

Tableau C-42: Descriptions des bits pour STATUSWORD3

Hexadécimal	Bit	Description
0x0001	0	Non utilisé
0x0002	1	Coupure d'alimentation
0x0004	2	Initialisation du transmetteur/ Mise en tempéra- ture
0x0008	3	Non utilisé
0x0010	4	Non utilisé
0x0020	5	Non utilisé
0x0040	6	Non utilisé
0x0080	7	Non utilisé
0x0100	8	Échec de l'étalonnage
0x0200	9	Échec de l'ajustage du zéro : débit faible
0x0400	10	Échec de l'ajustage du zéro : débit excessif
0x0800	11	Échec de l'ajustage du zéro : débit instable
0x1000	12	Panne du transmetteur
0x2000	13	Non utilisé
0x4000	14	Étalonnage en cours
0x8000	15	Écoulement biphasique

Tableau C-43: Descriptions des bits pour STATUSWORD4

Hexadécimal	Bit	Description
0x0001	0	Non utilisé
0x0002	1	Non utilisé
0x0004	2	Panne de la sonde de température

Hexadécimal	Bit	Description
0x0008	3	Panne de la sonde de température de série T
0x0010	4	Écoulement inverse
0x0020	5	Données de configuration d'usine invalides
0x0040	6	Non utilisé
0x0080	7	Dépassement de la dernière valeur mesurée ac- tivé
0x0100	8	Non utilisé
0x0200	9	Aucune valeur d'étalonnage en débit
0x0400	10	Non utilisé
0x0800	11	Non utilisé
0x1000	12	Aucune valeur K1
0x2000	13	Non utilisé
0x4000	14	Non utilisé
0x8000	15	Non utilisé

Tableau C-43: Descriptions des bits pour STATUSWORD4 (suite)

Tableau C-44: Descriptions des bits pour STATUSWORD5

Hexadécimal	Bit	Description
0x0001	0	Non utilisé
0x0002	1	Non utilisé
0x0004	2	Non utilisé
0x0008	3	Non utilisé
0x0010	4	État de la sortie tout-ou-rien
0x0020	5	Non utilisé
0x0040	6	Étalonnage en masse volumique D3 en cours
0x0080	7	Étalonnage en masse volumique D4 en cours
0x0100	8	Non utilisé
0x0200	9	Non utilisé
0x0400	10	Étalonnage de la pente en temp. en cours
0x0800	11	Étalonnage du décalage en temp. en cours
0x1000	12	Étalonnage en masse volumique FD en cours
0x2000	13	Étalonnage en masse volumique D2 en cours
0x4000	14	Étalonnage en masse volumique D1 en cours
0x8000	15	Etalonnage du zéro en cours

Tableau C-45: Descriptions des bits pour STATUSWORD6

Hexadécimal	Bit	Description
0x0001	0	Non utilisé

Hexadécimal	Bit	Description
0x0002	1	Non utilisé
0x0004	2	Non utilisé
0x0008	3	Non utilisé
0x0010	4	Non utilisé
0x0020	5	Non utilisé
0x0040	6	Non utilisé
0x0080	7	Non utilisé
0x0100	8	État de l'évènement avancé 1 (index = 0)
0x0200	9	État de l'évènement avancé 2 (index = 1)
0x0400	10	État de l'évènement avancé 3 (index = 2)
0x0800	11	État de l'évènement avancé 4 (index = 3)
0x1000	12	État de l'évènement avancé 5 (index = 4)
0x2000	13	Non utilisé
0x4000	14	Non utilisé
0x8000	15	Type de carte incorrect

 Tableau C-45:
 Descriptions des bits pour STATUSWORD6 (suite)

Tableau C-46: Descriptions des bits pour STATUSWORD7

Hexadécimal	Bit	Description
0x0001	0	Combinaison inconnue K1/FCF
0x0002	1	Initialisation du transmetteur/ Mise en tempéra- ture
0x0004	2	Tension d'alimentation trop faible
0x0008	3	Signal de détecteur droit/gauche
0x0010	4	Non utilisé
0x0020	5	Non utilisé
0x0040	6	Non utilisé
0x0080	7	Non utilisé
0x0100	8	Non utilisé
0x0200	9	Non utilisé
0x0400	10	Non utilisé
0x0800	11	Non utilisé
0x1000	12	Non utilisé
0x2000	13	Non utilisé
0x4000	14	Non utilisé
0x8000	15	Non utilisé

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Valeur haute
0x0001	1	Valeur basse
0x0002	2	Zéro
0x0003	3	NAN
0x0004	4	Débit nul
0x0005	5	Aucun

Tableau C-47: Codes des entiers pour le paramètre Action sur défaut de communication numérique

Tableau C-48: Codes des entiers pour la Gravité de l'alarme

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Ignorer
0x0001	1	Informations
0x0002	2	Erreur

Tableau C-49: Codes des entiers pour l'État de l'alarme

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Disparue et acquittée
0x0001	1	Active et acquittée
0x0002	2	Disparue et non acquittée
0x0003	3	Active et non acquittée

C.5.5

Bloc d'informations sur l'appareil PROFIBUS (emplacement 4) et informations liées

Dans le tableau suivant :

L'index du paramètre dans le bloc				
Le nom utilisé pour le paramètre dans le bloc				
Le ty	/pe de données du paramètre			
La classe de mémoire du paramètre :				
D	Stockage dynamique (données cycliques, paramètre mis à jour périodiquement)			
S	Stockage statique (données acycliques, paramètre modifié)			
Ν	Paramètre non-volatile (enregistré entre les cycles d'alimentation)			
Le ty	ype d'accès autorisé pour ce paramètre :			
RO	D Lecture seule			
RW	N Lecture/Ecriture			
	L'inc Le n Le ty La cl D S N Le ty RO RW			

Valeur par défaut	Valeur configurée en usine, à moins qu'une configuration particulière ait été commandée
Commentaires	Définition rapide du paramètre, nom du paramètre dans ProLink II, ou informations concernant le paramètre

Tableau C-50: Contenu du bloc d'informations sur l'appareil

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
5	SYS_CEQ_Number	UINT16	S	RO	SO	Numéro de conception à la demande (ETO) pour le transmetteur
6	SNS_SensorSerialNum	UINT32	S	RW	0	 Numéro de série de la sonde : entier de 3 octets. Premier registre : 00 dans l'octet de poids fort ; 8 premiers bits de la valeur dans l'octet de poids faible. Second registre : 16 derniers bits de valeur
7	SNS_SensorType	STRING	S	RW	SO	Type de capteur
8	SNS_SensorTypeCode	UINT16	S	RW	0	Code du type de sonde : • 0 = Tube courbe • 1 = Tube droit
9	SNS_SensorMaterial	UINT16	S	RW	0x00FD (253)	Matériau utilisé pour le boîtier de sonde (code des entiers ; voir <i>Tableau C-51</i>)
10	SNS_LinerMaterial	UINT16	S	RW	0x00FD (253)	Matériau utilisé pour le revêtement de sonde (code des entiers ; voir <i>Tableau C-52</i>)
11	SNS_FlangeType	UINT16	S	RW	0x00FD (253)	Type de raccord de sonde (code des entiers ; voir <i>Tableau C-53</i>)
12	SNS_MassFlowHiLim	FLOAT	S	RO	SO	Limite haute de débit massique du capteur
13	SNS_TempFlowHiLim	FLOAT	S	RO	SO	Limite haute de tempér- ature du capteur
14	SNS_DensityHiLim	FLOAT	S	RO	SO	Limite haute de masse volumique du capteur
15	SNS_VolumeFlowHiLim	FLOAT	S	RO	SO	Limite haute de débit volumique du capteur
16	SNS_MassFlowLoLim	FLOAT	S	RO	SO	Limite basse de débit massique du capteur
17	SNS_TempFlowLoLim	FLOAT	S	RO	SO	Limite basse de tempér- ature du capteur

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
18	SNS_DensityLoLim	FLOAT	S	RO	SO	Limite basse de masse volumique du capteur
19	SNS_VolumeFlowLoLim	FLOAT	S	RO	SO	Limite basse de débit volumique du capteur
20	SNS_MassFlowLoSpan	FLOAT	S	RO	SO	Étendue de mesure mini- mum du débit massique
21	SNS_TempFlowLoSpan	FLOAT	S	RO	SO	Étendue de mesure mini- mum de la température
22	SNS_DensityLoSpan	FLOAT	S	RO	SO	Étendue de mesure mini- mum de la masse volu- mique
23	SNS_VolumeFlowLoSpan	FLOAT	S	RO	SO	Étendue de mesure mini- mum du débit volumi- que
24	HART_HartDeviceID	UINT32	S	RW	SO	Numéro de série du transmetteur
25	SYS_SoftwareRev	UINT16	S	RO	SO	Version logicielle du transmetteur (xxx.xx : 1353 = rev13.53)
26	SYS_BoardRevision	UINT16	S	RO	SO	Numéro de version de l'électronique du trans- metteur

Tab	leau C-50:	Contenu d	u b	loc c	'in	ormations sur l	'appareil	(suite)
-----	------------	-----------	-----	-------	------------	-----------------	-----------	---------

Tableau C-51: Codes des entiers pour le Matériau de la sonde

Code (hexadécimal)	Code (décimal)	Description
0x0003	3	Hastelloy C-22
0x0004	4	Monel
0x0005	5	Tantale
0x0006	6	Titane
0x0013	19	Acier inoxydable 316L
0x0017	23	Inconel
0x0032	50	Acier inoxydable 304
0x00FC	252	Autres
0x00FD	253	Spécial

Tableau C-52: Codes des entiers pour le Matériau de revêtement de la sonde

Code (hexadécimal)	Code (décimal)	Description
0x000A	10	PTFE (Téflon)
0x000B	11	Halar
0x0010	16	Tefzel

Code (hexadécimal)	Code (décimal)	Description
0x00FB	251	Aucun
0x00FC	252	Autres
0x00FD	253	Spécial

Tableau C-52: Codes des entiers pour le Matériau de revêtement de la sonde (suite)

Tableau C-53: Codes des entiers pour le Type de raccord de la sonde

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	ANSI 150
0x0001	1	ANSI 300
0x0002	2	ANSI 600
0x0005	5	PN 40
0x0007	7	JIS 10K
0x0008	8	JIS 20K
0x0009	9	ANSI 900
0x000A	10	Raccords sanitaires
0x000B	11	Plaque union
0x000C	12	PN 100
0x00FB	251	Aucun
0x00FC	252	Autres
0x00FD	253	Spécial

C.5.6 Bloc de dosage PROFIBUS et informations liées

Dans le tableau suivant :

Index	L'inc	L'index du paramètre dans le bloc				
Nom	Le n	om utilisé pour le paramètre dans le bloc				
Type de données	Le ty	/pe de données du paramètre				
Classe de mémoire	La c	lasse de mémoire du paramètre :				
	D	Stockage dynamique (données cycliques, paramètre mis à jour périodiquement)				
	S	Stockage statique (données acycliques, paramètre modifié)				
	Ν	Paramètre non-volatile (enregistré entre les cycles d'alimentation)				
Accès	Le ty	/pe d'accès autorisé pour ce paramètre :				
	RO RM	Lecture seule				
Valeur par défaut	Vale part	Valeur configurée en usine, à moins qu'une configuration particulière ait été commandée				

Commentaires

Définition rapide du paramètre, nom du paramètre dans ProLink II, ou informations concernant le paramètre

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
4	BAT_EnableBatch	UINT16	S	RW	1	Autoriser le dosage : • 0 = Désactivé • 1 = Activé
5	BAT_IncrementalFlowS- ource	UINT16	S	RW	0	Origine du débit : • 0 = Débit massique • 5 = Débit volumique
6	BAT_CurrentTarget	FLOAT	S	RW	0	Quantité à délivrer
7	BAT_BatchStages	UINT16	S	RW	1	 Type de dosage : 1 = Tout-ou-rien un palier 2 = Tout-ou-rien deux paliers
8	BAT_CountDirection	UINT16	S	RW	1	Incrémentation : • 0 = Désactivé • 1 = Activé
9	BAT_StagePercentTar- get	UINT16	S	RW	0	Mode de configuration : • 0 = % Cible • 1 = Quantité
10	BAT_OpenPrimary	FLOAT	S	RW	0	Ouverture principale
11	BAT_OpenSecondary	FLOAT	S	RW	0	Ouverture secondaire
12	BAT_ClosePrimary	FLOAT	S	RW	100	Fermeture principale
13	BAT_CloseSecondary	FLOAT	S	RW	100	Fermeture secondaire
14	BAT_MaximumBatch- Time	FLOAT	S	RW	0	Durée maxi du dosage
15	BAT_EnableTimedFill	UINT16	S	RW	0	Autoriser le dosage tempo- risé : • 0 = Désactivé • 1 = Activé
16	BAT_TargetTime	FLOAT	S	RW	0	Heure cible
17	BAT_EnableDualFill	UINT16	S	RW	0	Autoriser le double dosage : • 0 = Désactivé • 1 = Activé
18	Réservé					
19	BAT_ActualFillTimeMe- thod	UINT16	S	RW	0	 Durée de dosage mesurée : 0 = Fermeture de la vanne 1 = Arrêts du débit
20	BAT_PumpToValveDelay	FLOAT	S	RW	10	Délai entre pompe et vanne

Tableau C-54: Contenu du bloc de dosage

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
21	BAT_EnableAOC	UINT16	5	RW	1	Corr. autom. d'erreur de jet- ée : • 0 = Désactivé • 1 = Activé
22	BAT_AOCAlgorithm	UINT16	S	RW	0	Type d'algorithme de corr. auto. d'erreur de jetée : • 0 = Sous-dosage • 1 = Sur-dosage • 2 = Fixe
23	BAT_LearningCycles	UINT16	S	RW	10	Nb de dosages corr. autom. err. jetée
24	BAT_AOCChangeLimit	FLOAT	S	RW	0	Limitation des valeurs de corr. auto. d'erreur de jetée à inclure aux cal- culs de corr. auto. d'er- reur de jetée suivants, en pourcentage.
25	BAT_AOCConvergen- ceRate	UINT16	S	RW	1	Limite de débit à laquelle les calculs de corr. auto. d'erreur de jetée conver- gent. • 1 = Normal • 2 = Lent
26	BAT_FixedAOCValue	FLOAT	S	RW	0	Valeur fixe corr. erreur jetée
27	BAT_AOC_Kave	FLOAT	S	RW	0.2	Coefficient sans unité calculé par les algo- rithmes AOC et utilisé pour ajuster la tempori- sation de la fermeture de la vanne principale (ou, pour les dosages TOR à deux paliers, de la der- nière vanne à fermer).
28	BAT_SecondaryAOCVal- ue	FLOAT	S	RW	0,2	Coefficient sans unité calculé par les algo- rithmes AOC et utilisé pour ajuster la tempori- sation de la fermeture de la vanne secondaire pour les dosages à tête de dosage double.
29	BAT_EnableBlowout	UINT16	S	RW	0	Activer la purge : • 0 = Désactivé • 1 = Activé

 Tableau C-54:
 Contenu du bloc de dosage (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
30	BAT_OperationMode	UINT16	S	RW	1	Mode de purge : • 0 = Auto • 1 = Manuel
31	BAT_PrimaryToSecon- daryTime	FLOAT	S	RW	2	Temporisation avant purge
32	BAT_SecondaryBatch- OnTime	FLOAT	S	RW	1	Temps de purge
33	BAT_PrecisionDO_ Source1	UINT16	S	RW	0x006E (110)	Précision DO1 : • 0x006E (110) = Vanne principale
34	BAT_PrecisionDO_Polar- ity1	UINT16	S	RW	1	 Polarité DO1 de précision : 0 = Niveau bas actif 1 = Niveau haut actif
35	BAT_PrecisionDO_ Source2	UINT16	S	RW	0x006F (111)	Précision D2 : • 0x006D (109) = Pompe • 0x006F (111) = Vanne secondaire
36	BAT_PrecisionDO_Polar- ity2	UINT16	S	RW	1	 Polarité DO2 de précision : 0 = Niveau bas actif 1 = Niveau haut actif
37	BAT_EnableFillLogging	UINT16	5	RW	0	Activer la journalisation du dosage : • 0 = Désactivé • 1 = Activé
38	BAT_FillLogIndex	UINT16	S	RW	0	Index des entrées dans la journalisation des dos- ages
39	BAT_FillLogValue	FLOAT	D	RO	0	Valeur de l'Origine du comptage dans l'entrée in- dexée
40	BAT_FillStatusWord	UINT16	D	RO	0	Voir Tableau C-55.
41	BAT_FillDiagnostic- sWord	UINT16	D	RO	0	Voir <i>Tableau</i> C-56.
42	MAO_SourceSec	UINT16	S	RW	0	Variable de processus en sortie analogique (code des entiers ; voir <i>Tableau C-57</i>)
43	MAO_mA4VarSec	FLOAT	S	RW	-0.2	Valeur inférieure de la plage (sortie analogique sec- ondaire)
44	MAO_mA20VarSec	FLOAT	S	RW	0,2	Valeur supérieure de la plage (sortie analogique sec- ondaire)

Tableau C-54: Contenu du bloc de dosage (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
45	MAO_CutoffSec	FLOAT	S	RW	0	Seuil de coupure de la sortie analogique (sortie analogi- que secondaire)
46	MAO_DampingSec	FLOAT	S	RW	0	Amortissement supplémen- taire (sortie analogique secondaire)
47	MAO_FaultIndicationSec	UINT16	S	RW	1	Action d'erreur sur la sortie analogique (sortie analogi- que secondaire) (code des entiers ; voir <i>Tableau C-58</i>)
48	MAO_FaultSettingSec	FLOAT	S	RW	2	Niveau d'erreur de la sortie analogique (sortie analogi- que secondaire)
49	SYS_TimeoutValueLMV	UINT16	S	RW	SO	Temporisation d'indication des défauts (Temporisa- tion dernière valeur me- surée)
50	MAO_FixOutputSec	UINT16	S	RW	0	Sortie analogique fixe (sor- tie analogique second- aire): • 0 = Désactivé • 1 = Activé
51	MAO_FixedMilliampSec	FLOAT	S	RW	SO	Valeur fixe de la sortie ana- logique (sortie analogique secondaire)
52	MAO_ActualMilliampSec	FLOAT	S	RO	SO	Valeur actuelle de la sortie analogique (sortie analogi- que secondaire)
53	MAO_Start4mATrimSec	UINT16	5	RW	0	Démarrer l'ajustage de la sortie analogique (sec- ondaire) à 4 mA : • 0 = Aucune action • 1 = Effectuer action
54	MAO_TrimLowSec	FLOAT	S	RW	10 835,12	Constante d'ajustage pour 4 mA (sortie ana- logique secondaire)
55	MAO_Start20mATrim- Sec	UINT16	S	RW	0	Démarrer l'ajustage de la sortie analogique (sec- ondaire) à 20 mA : • 0 = Aucune action • 1 = Effectuer action
56	MAO_TrimHighSec	FLOAT	S	RW	54 175,6	Constante d'ajustage pour 20 mA (sortie ana- logique secondaire)

Tableau C-54: Contenu du bloc de dosage (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
57	FO_Source	UINT16	S	RW	0	Variable de procédé de la sortie impulsions : • 0 = Débit massique • 5 = Débit volumique
58	FO_ScalingMethod	UINT16	S	RW	0	 Mode de réglage de la sortie impulsions : 0 = Fréquence = Débit 1 = Impulsions par unité 2 = Unités par impulsion
59	FO_FrequencyFactor	FLOAT	S	RW	1 000	Facteur de fréquence
60	FO_FlowRateFactor	FLOAT	S	RW	16,66667	Facteur de débit
61	FO_PulseWidth	FLOAT	S	RW	0	Largeur d'impulsion maxi- male
62	FO_PulsesPerUnit	FLOAT	S	RW	60	Impulsions par unité
63	FO_UnitsPerPulse	FLOAT	S	RW	0.0166666 7	Unités par impulsion
64	FO_FaultIndication	UINT16	S	RW	1	Action sur défaut sortie im- pulsions (code des en- tiers ; voir <i>Tableau C-59</i>)
65	FO_FaultFrequency	FLOAT	S	RW	15000	Valeur de défaut de la sortie fréquence
66	FO_Polarity	UINT16	S	RW	1	Polarité de la sortie impul- sions : • 0 = Niveau bas actif • 1 = Niveau haut actif
67	FO_FixOutput	UINT16	S	RW	0	Test sortie impulsions : • 0 = Désactivé • 1 = Activé
68	FO_FixedFrequency	FLOAT	S	RW	SO	Valeur fixe de la sortie fré- quence
69	FO_ActualFrequency	FLOAT	D	RO	SO	Valeur réelle de la sortie fré- quence
70	DO_Source	UINT16	S	RW	0x00CE (206)	 Affectation STOR1 : 0x0068 (104) = Indication d'erreur 0x006A (106) = Dosage en cours 0x00CE (206) = Prédéterminateur : vanne de purge
71	DO_Polarity	UINT16	S	RW	1	Polarité STOR1 : • 0 = Niveau bas actif • 1 = Niveau haut actif

Tableau C-54: Contenu du bloc de dosage (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
72	DO_FaultIndication	UINT16	S	RW	4	Action sur défaut de la sortie TOR (code des entiers ; voir tableau suivant)
73	DO_FixOutput	UINT16	S	RW	0	Sortie TOR fixe : • 0 = Désactivé • 1 = Activé
74	DO_FixedDiscrete	UINT16	S	RW	0	Valeur fixe de la sortie TOR : • 0 = Éteint • 1 = Allumé
75	SNS_ActionStartBatch	UINT16	S	RW	251 (non attribué)	Affecter Démarrer le dos- age comme une action d'entrée TOR :
						 0 = Aucune action 1 = Effectuer action
76	SNS_ActionEndBatch	UINT16	S	RW	251 (non attribué)	Affecter Arrêter le dosage comme une action d'en- trée TOR :
						 0 = Aucune action 1 = Effectuer action
77	SNS_ActionStopBatch	UINT16	S	RW	251 (non attribué)	Affecter Suspendre le dos- age comme une action d'entrée TOR :
						 0 = Aucune action 1 = Effectuer action
78	SNS_ActionResume- Batch	UINT16	S	RW	251 (non attribué)	Affecter Reprendre le dos- age comme une action d'entrée TOR :
						 0 = Aucune action 1 = Effectuer action
79	SNS_ActionResetMas- sTotal	UINT16	S	RW	251 (non attribué)	Affecter Réinitialiser le total partiel en masse comme une action d'entrée TOR :
						 0 = Aucune action 1 = Effectuer action
80	SNS_ActionResetVolTo- tal	UINT16	S	RW	251 (non attribué)	Affecter Réinitialiser le total partiel en volume comme une action d'entrée TOR : • 0 = Aucune action • 1 = Effectuer action
81	SNS_ActionResetAllTo- tals	UINT16	S	RW	251 (non attribué)	Affecter Réinitialiser tous les totaux comme une ac- tion d'entrée TOR : • 0 = Aucune action • 1 = Effectuer action

 Tableau C-54:
 Contenu du bloc de dosage (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
82	DI_Polarity	UINT16	S	RW	0	Polarité ETOR1 : • 0 = Niveau bas actif • 1 = Niveau haut actif
83	IO_ChannelB_Assign- ment	UINT16	S	RW	4	 Type de canal du canal B : 0 = Sortie impulsions 4 = Sortie TOR 5 = Entrée TOR
84	IO_ChannelB_Power	UINT16	S	RW	0	Type d'alimentation du canal B : • 0 = Externe (passive)
85	BAT_PrecisionDO_Ac- tual1	UINT16	S	RO	SO	Valeur réelle de précision STOR1 : • 0 = Éteint • 1 = Allumé
86	BAT_PrecisionDO_Ac- tual2	UINT16	S	RO	SO	Valeur réelle de précision D2 : • 0 = Éteint • 1 = Allumé
87	BAT_PrecisionDO_Fix- Output1	UINT16	S	RW	0	Test précision STOR1 : • 0 = Éteint • 1 = Allumé
88	BAT_PrecisionDO_Fix- Value1	UINT16	S	RW	0	Valeur fixe de précision STOR1 : • 0 = Éteint • 1 = Allumé
89	BAT_PrecisionDO_Fix- Output2	UINT16	S	RW	0	Test précision D2 : • 0 = Désactivé • 1 = Activé
90	BAT_PrecisionDO_Fix- Value2	UINT16	S	RW	0	Valeur fixe de précision D2 : • 0 = Éteint • 1 = Allumé
91	BAT_BatchTotalAverage	FLOAT	D	RO	0	Moyenne des dosages totaux
92	BAT_BatchTotalVariance	FLOAT	D	RO	0	Variance des dosages totaux
93	BAT_SecondaryBatchTo- talAverage	FLOAT	D	RO	0	Moyenne des dosages sec- ondaires
94	BAT_SecondaryBatchTo- talVariance	FLOAT	D	RO	0	Variance des dosages sec- ondaires
95	BAT_ResetBatchStatis- tics	UINT16	S	RW	0	Remise à zéro des statis- tiques du dosage : • 0 = Aucune action • 1 = Effectuer action
96	BAT_OverrideBlocked- Start	UINT16	S	RW	0	Forcer le démarrage : • 0 = Aucune action • 1 = Effectuer action

Tableau C-54: Contenu du bloc de dosage (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
97	BAT_StartPurge	UINT16	S	RW	0	Démarrer la purge : • 0 = Aucune action • 1 = Effectuer action
98	BAT_StopPurge	UINT16	S	RW	0	Arrêter la purge : • 0 = Aucune action • 1 = Effectuer action
99	BAT_StartAOCCalibra- tion	UINT16	S	RW	0	Démarrer l'ajustage AOC : • 0 = Aucune action • 1 = Effectuer action
100	BAT_StartSecondar- yAOCTraining	UINT16	5	RW	0	Démarrer l'ajustage AOC secondaire : • 0 = Aucune action • 1 = Effectuer action
101	BAT_SaveAOCCalibra- tion	UINT16	S	RW	0	 Enregistrer l'ajustage AOC : 0 = Aucune action 1 = Effectuer action
102	BAT_SaveSecondar- yAOCTraining	UINT16	S	RW	0	Enregistrer l'ajustage AOC secondaire : • 0 = Aucune action • 1 = Effectuer action
103	BAT_BatchCount	UINT16	D	RO	0	Nombre de dosages
104	BAT_ResetBatchCount	UINT16	S	RW	0	Remise à zéro du nombre de dosages : • 0 = Aucune action • 1 = Effectuer action
105	BAT_PercentFill	FLOAT	D	RO	0	Pourcentage dosage
106	BAT_StartFill	UINT16	S	RW	0	Démarrer le dosage : • 0 = Aucune action • 1 = Effectuer action
107	BAT_StopFill	UINT16	S	RW	0	Arrêter le dosage : • 0 = Aucune action • 1 = Effectuer action
108	BAT_ResumeFill	UINT16	S	RW	0	Reprendre le dosage : • 0 = Aucune action • 1 = Effectuer action
109	BAT_ResetAocFlowRate	UINT16	S	RW	0	 RAZ du débit AOC : 0 = Aucune action 1 = Effectuer action
110	BAT_PauseFill	UINT16	S	RW	0	Interrompre le dosage : • 0 = Aucune action • 1 = Effectuer action
111	BAT_StartClean	UINT16	S	RW	0	Démarrer le rinçage : • 0 = Aucune action • 1 = Effectuer action

 Tableau C-54:
 Contenu du bloc de dosage (suite)

Index	Nom	Type de données	Classe de mémoire	Accès	Valeur par défaut	Commentaires
112	BAT_StopClean	UINT16	5	RW	0	 Arrêter le rinçage : 0 = Aucune action 1 = Effectuer action
113	BAT_ParamUnits	UINT16	D	RO	SO	Unités utilisées pour la mesure du dosage. Si le Mode de configuration défi- ni est % cible, l'unité est le pourcentage. Si le Mode de configuration défini est Quantité, l'unité est l'unité utilisée pour la variable de procédé Origine d'écoulement. Voir <i>Tableau C-61</i> .
114	BAT_ResetBatch	UINT16	S	RW	0	 RAZ du total dosé : 0 = Aucune action 1 = Effectuer action
115	BAT_StartSecondaryFill	UINT16	S	RW	0	Démarrer le dosage second- aire : • 0 = Aucune action • 1 = Effectuer action
116	BAT_StopSecondaryFill	UINT16	S	RW	0	Arrêter le dosage second- aire : • 0 = Aucune action • 1 = Effectuer action
117	BAT_CurrentTotal	FLOAT	D	RO	0	Total dosé
118	BAT_BatchFillTime	FLOAT	D	RO	0	Durée dosage actuel
119	BAT_RotarySwitchSet- ting	UINT16	S	RO	0	Adresse de nœud du transmetteur (adresse réseau)
120	IO_ChannelC_Assign- ment	UINT16	5	RW	3	Type de canal du canal C : • 3 = Sortie analogique (secondaire)
121	IO_ChannelC_Power	UINT16	S	RW	1	Type d'alimentation du canal C : • 1 = Interne (active)

Tableau C-54:	Contenu	du bloc de	dosage (suite)
---------------	---------	------------	----------------

Tableau C-55: Définitions des bits pour le mot d'état du dosage

Hexadécimal	Bit	Description
0x0001	0	Dosage principal en cours
0x0002	1	Dosage secondaire en cours
0x0004	2	Temporisation avant purge en cours
0x0008	3	Purge en cours

Hexadécimal	Bit	Description
0x0010	4	Rinçage en cours
0x0020	5	Vanne principale ouverte
0x0040	6	Vanne secondaire ouverte
0x0080	7	Vanne de purge ouverte
0x0100	8	Pompe en cours d'utilisation
0x0200	9	Ajustage AOC principal en cours
0x0400	10	Ajustage AOC secondaire en cours
0x0800	11	Dosage par tête de dosage double activé
0x1000	12	Dosage temporisé activé
0x2000	13	Réservé
0x4000	14	Journalisation de dosage en cours
0x8000	15	Non défini

Tableau C-55: Définitions des bits pour	'le mot d'état du dosage	(suite)
---	--------------------------	---------

Tableau C-56: Définitions des bits pour le mot d'état de diagnostic

Bit (hexadécimal)	Bit (n°)	Description
0x0001	0	Démarrage impossible
0x0002	1	Débit trop élevé pour corr. autom. erreur jetée
0x0004	2	Durée maxi du dosage dépassée
0x0008	3	Écoulement biphasique
0x0010	4	Aucune réponse du capteur
0x0020	5	Excitation hors limites
0x0040	6	Panne du capteur
0x0080	7	Panne du transmetteur
0x0100	8	Masse volumique hors limites
0x0200	9	Température hors limites
0x0400	10	Adresse PROFIBUS hors limites
0x0800	11	Non défini
0x1000	12	Non défini
0x2000	13	Non défini
0x4000	14	Non défini
0x8000	15	Non défini

Tableau C-57: Codes des entiers pour Variable de processus en sortie analogique

Code (hexadéci- mal)	Code (décimal)	Description
0x0000	0	Débit massique
0x0001	1	Température

Code (hexadéci- mal)	Code (décimal)	Description
0x0002	2	Total partiel masse
0x0003	3	Masse volumique
0x0004	4	Total général masse
0x0005	5	Débit volumique
0x0006	6	Total partiel volume
0x0007	7	Total général volume
0x000F	15	API : masse volumique à température de référence
0x0010	16	API : débit volumique (aux conditions de base) à tempéra- ture de référence
0x0011	17	API : total partiel en volume (aux conditions de base) à tem- pérature de référence
0x0012	18	API : total général en volume (aux conditions de base) à température de référence
0x0013	19	API : masse volumique moyenne pondérée sur la quantité livrée
0x0014	20	API : température moyenne pondérée sur la quantité livrée
0x0015	21	Masse volumique avancée : masse volumique à la tempéra- ture de référence
0x0016	22	Masse volumique avancée : masse volumique (unités de densité fixes)
0x0017	23	Masse volumique avancée : débit volumique aux conditions de base
0x0018	24	Masse volumique avancée : total partiel en volume aux con- ditions de base
0x0019	25	Masse volumique avancée : total général en volume aux conditions de base
0x001A	26	Masse volumique avancée : débit massique net
0x001B	27	Masse volumique avancée : total partiel en masse nette
0x001C	28	Masse volumique avancée : total général en masse nette
0x001D	29	Masse volumique avancée : débit volumique net
0x001E	30	Masse volumique avancée : total partiel en volume net
0x001F	31	Masse volumique avancée : total général en volume net
0x0020	32	Masse volumique avancée : concentration
0x0021	33	API : CTL
0x002E	46	Impulsion des tubes
0x002F	47	Niveau d'excitation
0x0030	48	Température du boîtier du capteur (Série T)
0x0031	49	Amplitude du détecteur gauche
0x0032	50	Amplitude du détecteur droit
0x0033	51	Température carte

Tableau C-57: Codes des entiers pour Variable de processus en sortie analogique (suite)

Code (hexadéci- mal)	Code (décimal)	Description
0x0035	53	Pression externe
0x0037	55	Température externe
0x003F	63	Débit volumique de gaz aux conditions de base
0x0040	64	Total en volume de gaz aux conditions de base
0x0041	65	Total général en volume de gaz aux conditions de base
0x0045	69	Débit sous seuil
0x00FB	251	Aucun

Tableau C-57: Codes des entiers pour Variable de processus en sortie analogique (suite)

Tableau C-58: codes des entiers pour Action sur défaut de sortie analogique

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Valeur haute
0x0001	1	Valeur basse
0x0003	3	Zéro interne
0x0004	4	Aucune action de défaut

Tableau C-59: Codes des entiers pour Action sur défaut de sortie impulsions

Code (hexadécimal)	Code (décimal)	Description
0x0000	0	Valeur haute
0x0001	1	Valeur basse
0x0003	3	Zéro interne
0x0004	4	Aucune action de défaut

Tableau C-60: Codes des entiers pour Action sur défaut de sortie TOR

Code (hexadécimal)	Code (décimal)	Description			
0x0000	0	Valeur haute			
0x0001	1	Valeur basse			
0x0004	4	Aucune action de défaut			

Tableau C-61: Codes des entiers pour les unités de mesure

Code (hexadécimal)	Code (décimal)	Description
0x0039	57	En pourcentages
0x003C	60	Grammes
0x003D	61	Kilogrammes
0x003E	62	Tonnes métriques
0x003F	63	Livres

Code (hexadécimal)	Code (décimal)	Description		
0x0040	64	Tonnes courtes (US, 2 000 livres)		
0x0041	65	Tonnes fortes (UK, 2 240 livres)		
0x0028	40	Gallons		
0x0029	41	Litres		
0x002A	42	Gallons impériaux (U.K.)		
0x002B	43	Mètres cube		
0x002E	46	Barils		
0x0070	112	Pieds cube		
0x00AA	170	Barils de bière		

Tableau C-61:	Codes des entiers	pour les unités de mesure ('suite)
---------------	-------------------	-----------------------------	---------

C.5.7 Bloc des fonctions d'identification et de maintenance PROFIBUS

Dans le tableau suivant :

Index	L'index du paramètre dans le bloc						
Nom	Le nom utilisé pour le paramètre dans le bloc						
Type de données	Le ty	/pe de données du paramètre					
Classe de mémoire	La c	asse de mémoire du paramètre :					
	D	Stockage dynamique (données cycliques, paramètre mis à jour périodiquement)					
	S	Stockage statique (données acycliques, paramètre modifié)					
	Ν	Paramètre non-volatile (enregistré entre les cycles d'alimentation)					
Accès	Le ty	Le type d'accès autorisé pour ce paramètre :					
	RO	Lecture seule					
	RW	XW Lecture/Ecriture					
Valeur par défaut	Valeur configurée en usine, à moins qu'une configuration particulière ait été commandée						
Commentaires	Définition rapide du paramètre, nom du paramètre dans ProLink II, ou informations concernant le paramètre						

Index	Catégorie	Nom	Type de données	Taille	Classe de mém- oire	Accès	Valeur par dé- faut	Description
255 I	I&M0	EN-TÊTE	STRING	10	S	RO	0x20 0x20 0x20 0x20 0x20 0x20 0x20 0x20	Chaîne spéci- fique au fab- ricant
		MANUFACTURER_ ID	UINT16	2	S	RO	0x001F	Identifiant du fabricant at- tribué par PTO
	ORDER_ID	STRING	20	5	RO	Trans- metteur FMT pour dosage haute cadence	Identifiant de la com- mande du dispositif	
	SERIAL_NO	STRING	16	S	RO	Varie	Numéro de série de pro- duction du dispositif	
	HARDWARE_REVI- SION	UINT16	2	S	RO	0	Numéro de révision du matériel	
		SOFTWARE_REVI- SION	 Octet 1 = STRING Octet 2 = UINT8 Octet 3 = UINT8 Octet 4 = UINT8 	4 Octets	S	RO		Reconnais- sance du type
		REV_COUNTER	UINT16	2	S	RO	0	Marque le changement de révision matérielle ou de n'importe lequel de ses paramètres
		PROFILE_ID	UINT16	2	S	RO	0xF600	Type de pro- file du profil de soutien
		PROFILE_SPECIF- IC_TYPE	UINT16	2	S	RO	0xF600	Type de pro- fil spécifique

Tableau C-62: Contenu du bloc de fonctions I&M

Index	Catégorie	Nom	Type de données	Taille	Classe de mém- oire	Accès	Valeur par dé- faut	Description
		IM_VERSION_0	UINT8	1	S	RO	11	Version mise en œuvre des fonctions I&M0
		IM_VERSION_1	UINT8	1	S	RO	11	Version mise en œuvre des fonctions I&M1
		IM_SUPPORTED	UINT16 ⁽¹⁾	2	S	RO	0x0003	Disponibilité indiquée des fonctions I&M
15	I&M1	EN-TÊTE	STRING	10	S	RO	0x20 0x20 0x20 0x20 0x20 0x20 0x20 0x20	Chaîne spéci- fique au fab- ricant
16	_	TAG_FUNCTION	STRING	32	S	RW		Plaque d'identifica- tion de l'ap- pareil
17		TAG_LOCATION	STRING	32	S	RW		Plaque d'identifica- tion de l'em- placement de l'appareil

Tableau C-62:	Contenu	du bloc de	fonctions	I&M (suite)
---------------	---------	------------	-----------	-------------

П

(1) Mise en oeuvre comme ensemble de bits.

Index

A

Action sur défaut affecté par Temporisation d'indication des défauts 195 communication numérique 224 sorties analogiques 209 sorties impulsions 214 sorties TOR 218 Action sur défaut de communication numérique 224 adresse adresse de nœud 13, 16 adresse de nœud 298, 309 adresse réseau, voir adresse de nœud ajustage, voir sorties analogiques, ajustage ajustage AOC Voir aussi Correction automatique d'erreur de jetée (AOC) continu avec les paramètres de bus PROFIBUS 131 avec PROFIBUS EDD 84 avec ProLink II 40 standard avec les paramètres de bus PROFIBUS 130 avec PROFIBUS EDD 83 avec ProLink II 39 types 39, 83, 130 ajustage AOC continu, voir ajustage AOC ajustage AOC standard, voir ajustage AOC alarmes affichage et acquittement avec paramètres de bus PROFIBUS 231 avec PROFIBUS EDD 231 avec ProLink II 229 avec ProLink III 230 codes d'alarme 251 configuration de la gestion des alarmes 195 dépannage 251 Gravité des alarmes configuration 196 options 197 réponse du transmetteur 232 alarmes d'état. voir alarmes alertes, voir alarmes alimentation mise sous tension 6, 12, 15 amortissement amortissement de la masse volumique 187 amortissement de la température 189 amortissement du débit 171 Amortissement supplémentaire 208

interaction entre l'amortissement supplémentaire et l'amortissement de variable de procédé 209 sur sorties analogiques 208 amortissement du débit configuration 171 effet sur les mesures de volume 172 interaction avec l'amortissement supplémentaire 172 Amortissement supplémentaire 208 analyse du dosage analyse du dosage avec les paramètres de bus PROFIBUS 156 iournalisation du dosage avec les paramètres de bus PROFIBUS 155 avec PROFIBUS EDD 106 avec ProLink II 62 statistiques du dosage avec PROFIBUS EDD 107 avec ProLink II 63 AOC, voir Correction automatique d'erreur de jetée (AOC) AOC fixe, voir Correction automatique d'erreur de jetée (AOC) arborescence des menus PROFIBUS-DP EDD 291

В

Bloc d'ajustage, voir PROFIBUS-DP Bloc d'informations sur l'appareil, voir PROFIBUS-DP Bloc de diagnostic, voir PROFIBUS-DP Bloc de dosage, voir PROFIBUS-DP Bloc de mesure, voir PROFIBUS-DP Bloc I & M, voir PROFIBUS-DP bobines de capteur dépannage 278

С

câblage câblage d'alimentation dépannage 262 mise à la terre dépannage 263 câblage d'alimentation dépannage 262 caractérisation paramètres d'étalonnage en débit 169 paramètres de la plaque signalétique du capteur 168 paramètres de masse volumique 169 procédure 167 codes de modèle, *voir* codes de modèles des transmetteurs codes de modèles des transmetteurs et protocoles pris en charge 5 et types de dosages pris en charge 2 commande de dosage configuration d'un évènement pour utilisation de PROFIBUS EDD 90 utilisation de ProLink II 46 utilisation des paramètres de bus PROFIBUS 138 configuration de l'entrée TOR pour utilisation de PROFIBUS EDD 88 utilisation de ProLink II 44 utilisation des paramètres de bus PROFIBUS 136 communication numérique Action sur défaut de communication numérique configuration 224 options 225 communications, voir communication numérique communications acycliques, voir PROFIBUS-DP communications cycliques, voir PROFIBUS-DP compensation de pression configuration avec ProLink II 191 avec ProLink III 192 présentation 190 unités de mesure de pression options 194 compteurs démarrage et arrêt exécution d'une action 233 configuration *Voir aussi* configuration de dosage communication numérique 224 compensation de pression, voir compensation de pression entrées TOR 219 événements avancés 222 mesure de débit massique 170 mesure de débit volumique 175 mesure de masse volumique 183 mesure de température 188 paramètres d'informations 199 rétablissement de la configuration d'usine avec les paramètres de bus PROFIBUS 17 avec ProLink II 11 avec ProLink III 11 sorties analogiques 204 sorties impulsions 210 sorties TOR 216 valeurs par défaut dosage contrôlé par vanne intégrée 21 paramètres de transmetteur standard 280 voie 203 configuration de dosage Voir aussi commande de dosage Voir aussi options de dosage

Voir aussi rapport de dosage dosage à tête double avec paramètres de bus PROFIBUS 121 avec PROFIBUS EDD 76 avec ProLink II 32 dosage contrôlé par vanne externe avec paramètres de bus PROFIBUS 163 avec PROFIBUS EDD 161 using ProLink II 159 dosage contrôlé par vanne intégrée avec paramètres de bus PROFIBUS 109 avec PROFIBUS EDD 65 avec ProLink II 22 dosage temporisé avec paramètres de bus PROFIBUS 119 avec PROFIBUS EDD 73 avec ProLink II 30 dosage temporisé à tête double avec paramètres de bus PROFIBUS 125 avec PROFIBUS EDD 79 avec ProLink II 35 dosage TOR à deux paliers avec paramètres de bus PROFIBUS 112 avec PROFIBUS EDD 68 avec ProLink II 25 dosage TOR à un seul palier avec paramètres de bus PROFIBUS 109 avec PROFIBUS EDD 65 avec ProLink II 22 valeurs par défaut 21 configuration de voie 203 Configurer par effets sur le dosage TOR à deux paliers 30, 73, 118 connexion paramètres de bus PROFIBUS 16 PROFIBUS EDD 13 ProLink II Modbus/RS-485 7 port service 7 Correction automatique d'erreur de jetée (AOC) configuration avec les paramètres de bus PROFIBUS 128 avec PROFIBUS EDD 81 avec ProLink II 37 définition 3 types 37, 81, 128 coupures dépannage 274 courts-circuits dépannage 278 courts-circuits électriques dépannage 278

D

Date 200

dépannage alarmes 251 câblage 262 courts-circuits électriques 278 écoulement biphasique 275 interférences radio 273 le dosage ne démarre pas avec les paramètres de bus PROFIBUS 147 avec PROFIBUS EDD 98 avec ProLink II 54 le dosage ne s'achève pas avec les paramètres de bus PROFIBUS 147 avec PROFIBUS EDD 98 avec ProLink II 54 mesure de débit massique 256, 274 mesure de débit volumique 256, 274 mesure de masse volumique 274, 275 mesure de température 259 mise à la terre 263 niveau d'excitation 275, 276 rétablissement de la configuration d'usine avec les paramètres de bus PROFIBUS 17 avec ProLink II 11 avec ProLink III 11 sorties analogiques 260, 272–274 sorties impulsions 261, 273, 274 sorties TOR 273, 274 tension de détection 277 test système 262 Descripteur 199 détection collecte de données 278 dépannage 277 diagnostics simulation de capteur 8 test de boucle avec ProLink II 263 avec ProLink III 265 dosage à double tête configuration avec paramètres de bus PROFIBUS 121 dosage à tête double configuration avec PROFIBUS EDD 76 avec ProLink II 32 dosage contrôlé par vanne externe configuration avec paramètres de bus PROFIBUS 163 avec PROFIBUS EDD 161 avec ProLink II 159 dosage contrôlé par vanne intégrée configuration avec paramètres de bus PROFIBUS 109 avec PROFIBUS EDD 65 avec ProLink II 22

fonctionnement avec PROFIBUS EDD 96 dosage temporisé configuration avec paramètres de bus PROFIBUS 119 avec PROFIBUS EDD 73 avec ProLink II 30 dosage temporisé à tête double configuration avec paramètres de bus PROFIBUS 125 avec PROFIBUS EDD 79 avec ProLink II 35 dosage TOR à deux paliers configuration avec paramètres de bus PROFIBUS 112 avec PROFIBUS EDD 68 avec ProLink II 25 effet de Mode de configuration sur l'ouverture et la fermeture de la vanne 30, 73, 118 effet de Pause et Reprise sur l'ouverture et la fermeture de la vanne 55, 56, 58, 59, 99, 100, 102, 103, 148, 149, 151, 152 séquences d'ouverture et de fermeture de vanne 28, 72, 117 dosage TOR à un seul palier configuration avec paramètres de bus PROFIBUS 109 avec PROFIBUS EDD 65 avec ProLink II 22 dosages à deux paliers TOR définition 2 exigences E/S 4 dosages à un palier TOR définition 2 exigences E/S 4 dosages contrôlés par vanne externe définition 2 exigences E/S 4 fonctionnement 160, 162, 165 dosages contrôlés par vanne intégrée définition 2 exigences E/S 4 fonctionnement avec les paramètres de bus PROFIBUS 145 avec ProLink II 52 dosages par tête de dosage double définition 2 dosages par tête de dosage double temporisés définition 2 dosages par tête double exigences E/S 4 dosages par tête double temporisés exigences E/S 4 dosages temporisés définition 2 exigences E/S 4

Transmetteurs massiques de conditionnement Micro Motion[®] avec PROFIBUS-DP
E

écoulement biphasique, voir mesure de masse volumique, écoulement biphasique EDD, voir PROFIBUS-DP entrées TOR actions configuration 220 options 221 configuration 219 configuration pour commande de dosage avec les paramètres de bus PROFIBUS 136 avec PROFIBUS EDD 88 avec ProLink II 44 polarité configuration 221 options 222 test de boucle avec ProLink II 263 avec ProLink III 265 étalonnage en masse volumique D1 et D2 avec paramètres de bus PROFIBUS 247 avec PROFIBUS EDD 246 avec ProLink III 245 présentation 243 en masse volumique sur D1 et D2 avec ProLink II 244 en température avec ProLink II 248 avec ProLink III 249 sorties analogiques, voir sorties analogiques, ajustage étalonnage en masse volumique, voir étalonnage, masse volumique étalonnage en température, voir étalonnage, température étalonnage sur air, voir étalonnage, masse volumique étalonnage sur eau, voir étalonnage, masse volumique événements Action de l'événement avancé configuration 222 options 223 configuration d'événements avancés 222 évènements configuration pour commande de dosage avec les paramètres de bus PROFIBUS 138 avec PROFIBUS EDD 90 avec ProLink II 46 événements avancés, voir événements exigences E/S 4

F

facteur de débit, *voir* compensation de pression facteur de masse volumique, *voir* compensation de pression facteurs de débitmètre, voir validation du débitmètre fonction Pompe configuration avec les paramètres de bus PROFIBUS 134 avec PROFIBUS EDD 87 avec ProLink II 43 définition 3 Exigences E/S 4 fonction Purge configuration avec les paramètres de bus PROFIBUS 132 avec PROFIBUS EDD 85 avec ProLink II 41 définition 3 effectuer une purge avec les paramètres de bus PROFIBUS 154 avec PROFIBUS EDD 105 avec ProLink II 61 Exigences E/S 4 fonctionnement du dosage dosages contrôlés par vanne externe 160, 162, 165 dosages contrôlés par vanne intégrée avec les paramètres de bus PROFIBUS 145 avec PROFIBUS EDD 96 avec ProLink II 52

G

gaz entraîné, *voir* mesure de masse volumique, écoulement biphasique GSD, *voir* PROFIBUS-DP

I

interfaces d'utilisateur pour les tâches 5 prises en charge par le transmetteur 5 interférences radio dépannage 273 interrogation pression avec ProLink II 191 avec ProLink III 192

J

journalisation Voir aussi journalisation du dosage journalisation du dosage avec les paramètres de bus PROFIBUS 155 avec PROFIBUS EDD 106 avec ProLink II 62

L

Largeur d'impulsion maximale 213 largeur d'impulsion 213

Μ

Matériau de construction du capteur 201 Matériau de revêtement interne du capteur 202 Message 200 messages de sécurité ii mesure de débit massique amortissement du débit 171 configuration 170 dépannage 256 seuil de coupure configuration 173 configuration pour les applications de dosage 172 effet sur les mesures de volume 174 interaction avec le seuil de coupure de la sortie analogique 174 unités de mesure configuration 170 options 170 mesure de débit volumique configuration 175 dépannage 256 effet de l'amortissement de la masse volumique 187 effet de l'amortissement du débit 172 effet du seuil de coupure de débit massique 174 effet du seuil de coupure de la masse volumique 188 facteur de débitmètre 241, 243 seuil de coupure configuration 177 configuration pour les applications de dosage 177 interaction avec le seuil de coupure de la sortie analogique 178 unités de mesure configuration 175 options 175 mesure de masse volumique amortissement effet sur les mesures de volume 187 interaction avec l'amortissement supplémentaire 187 configuration 183 dépannage 258 écoulement biphasique configuration 185 dépannage 275 fonctionnement du transmetteur 186 facteur de débitmètre 241 seuil de coupure configuration 188 effet sur les mesures de volume 188 unités de mesure configuration 184 options 184

mesure de température amortissement configuration 189 effet sur les mesures de procédé 190 configuration 188 dépannage 259 unités de mesure configuration 189 options 189 mise à la terre dépannage 263 Modbus codes de modèles des transmetteurs 5 connexions ProLink II 7 modules d'entrée. voir PROFIBUS-DP modules de sortie, voir PROFIBUS-DP

Ν

NEP, voir Nettoyage En Place Nettoyage En Place avec ProLink II 61 Nettoyer En Place avec les paramètres de bus PROFIBUS 155 avec PROFIBUS EDD 106 niveau d'excitation collecte de données 277 dépannage 275, 276 Numéro de série du capteur 201

0

options de dosage configuration avec les paramètres de bus PROFIBUS 132 configuration de la Correction automatique d'erreur de ietée avec les paramètres de bus PROFIBUS 128 avec PROFIBUS EDD 81 avec ProLink II 37 configuration de la fonction Pompe avec les paramètres de bus PROFIBUS 134 avec PROFIBUS EDD 87 avec ProLink II 43 configuration de la fonction Purge avec PROFIBUS EDD 85 avec ProLink II 41 options du dosage 3

Ρ

paramètres d'étalonnage, *voir* caractérisation paramètres d'informations 199 paramètres de bus, *voir* PROFIBUS-DP Pause et Reprise effets sur les dosages TOR à deux paliers 55, 56, 58, 59, 99, 100, 102, 103, 148, 149, 151, 152 polarité entrées TOR 221 sorties impulsions 211 sorties TOR 217 port service connexions ProLink II 7 pression d'étalonnage, voir compensation de pression PROFIBUS-DP codes de modèles des transmetteurs 5 EDD arborescence des menus 291 paramétrage 13 fonctionnalité prise en charge 290 GSD modules d'entrée 299 modules de sortie 303 paramétrage 298 octets de diagnostic 304 paramètres de bus Bloc d'ajustage 315 Bloc d'informations sur l'appareil 329 Bloc de diagnostic 319 Bloc de dosage 332 Bloc de mesure 310 Bloc I & M 345 connexion au transmetteur 13, 16 types de données 309 ProLink II connexion Modbus/RS-485 7 port service 7 exigences 284 présentation 284, 285 ProLink III structures de menu 285 protocoles interfaces d'utilisateur prises en charge 5 pris en charge par le transmetteur 5

R

rapport de dosage configuration de la sortie analogique pour utilisation de PROFIBUS EDD 95 utilisation de ProLink II 50 utilisation des paramètres de bus PROFIBUS 143 configuration de la sortie TOR pour utilisation de PROFIBUS EDD 94 utilisation de ProLink II 49 utilisation des paramètres de bus PROFIBUS 142 réglage sorties analogiques 205 sorties impulsions 212

S

sens d'écoulement dépannage 274 effet sur le total de dosage contrôlé par vanne intégrée) 182 effet sur les sorties impulsions 181 Sens d'écoulement configuration 179 effet sur la communication numérique 182 effet sur les compteurs et les totalisateurs 182 effet sur les sorties analogiques 180 effet sur les sorties TOR 181 options 179 séquences d'ouverture et de fermeture de vanne effets de Pause et Reprise 55, 56, 58, 59, 99, 100, 102, 103, 148, 149, 151, 152 fonctionnement normal 28, 72, 117 service après-vente coordonnées ii services DP-V0, voir PROFIBUS-DP services DP-V1, voir PROFIBUS-DP Seuil de coupure de la sortie analogique 207 seuils de coupure dans les applications de dosage débit massique 172 débit volumique 177 débit massique 173 débit volumique 177 interaction entre le seuil de coupure de la sortie analogique et le seuil de coupure de la variable procédé 207 masse volumique 188 seuil de coupure de la sortie analogique 207 simulation simulation de capteur avec ProLink II 8 avec ProLink III 8 simulation de capteur avec ProLink II 8 avec ProLink III 8 dépannage 262 présentation 10 sortie TOR polarité options 217 sorties analogiques Action sur défaut configuration 209 options 210 ajustage avec paramètres de bus PROFIBUS 271 avec PROFIBUS EDD 271 avec ProLink II 270 avec ProLink III 271

Amortissement supplémentaire configuration 208 interaction avec l'amortissement de la masse volumiaue 187 interaction avec l'amortissement du débit 172 configuration 204 configuration pour rapport de dosage avec les paramètres de bus PROFIBUS 143 avec PROFIBUS EDD 95 avec ProLink II 50 dépannage 260, 272, 273 réglage 205 seuil de coupure de la sortie analogique configuration 207 interaction avec le seuil de coupure de débit volumique 178 test de boucle avec paramètres de bus PROFIBUS 268 avec PROFIBUS EDD 266 avec ProLink II 263 avec ProLink III 265 Valeur basse d'échelle et Valeur haute d'échelle configuration 205 valeurs par défaut 206 variable procédé configuration 204 options 205 sorties impulsions Action sur défaut configuration 214 options 215 configuration 210 configuration pour un dosage contrôlé par vanne externe avec paramètres de bus PROFIBUS 163 avec PROFIBUS EDD 161 avec ProLink II 159 dépannage 261, 273, 274 largeur d'impulsion maximale 213 mode de réglage configuration 212 Fréquence = Débit 212 polarité configuration 211 options 211 test de boucle avec paramètres de bus PROFIBUS 268 avec PROFIBUS EDD 266 avec ProLink II 263 avec ProLink III 265 sorties TOR Action sur défaut configuration 218 options 218 configuration 216

configuration pour rapport de dosage avec les paramètres de bus PROFIBUS 142 avec PROFIBUS EDD 94 avec ProLink II 49 indication de défaut 219 polarité configuration 217 source configuration 216 options 216 test de boucle avec paramètres de bus PROFIBUS 268 avec PROFIBUS EDD 266 avec ProLink II 263 avec ProLink III 265 sorties tout-ou-rien sorties tout-ou-rien de précision 4 sorties tout-ou-rien de précision 4 statistiques du dosage avec les paramètres de bus PROFIBUS 156 avec PROFIBUS EDD 107 avec ProLink II 63 structures de menu ProLink II 285

Т

Temporisation d'indication des défauts configuration 195 effet sur Action sur défaut 195 Temporisation dernière valeur mesurée, voir Temporisation d'indication des défauts test test de boucle avec paramètres de bus PROFIBUS 268 avec PROFIBUS EDD 266 avec ProLink II 263 avec ProLink III 265 test système 8 test de boucle avec paramètres de bus PROFIBUS 268 avec PROFIBUS EDD 266 avec ProLink II 263 avec ProLink III 265 totalisateurs généraux démarrage et arrêt 233 réinitialisation exécution d'une action 234 Type de bride du capteur 202 types de dosages 2

U

unité, voir unités de mesure

unités de mesure débit massique configuration 170 options 170 débit volumique configuration 175 options 175 masse volumique configuration 184, 187 options 184 pression, *voir* compensation de pression température configuration 189 options 189

V

Valeur basse d'échelle (LRV) 205 Valeur débit 212 Valeur fréquence 212 Valeur haute d'échelle (URV) 205 valeurs par défaut dosage contrôlé par vanne intégrée 21 paramètres de transmetteur standard 280 validation du débitmètre autre méthode pour le débit volumique 243 méthode standard 241 variables procédé *Voir aussi* mesure de débit massique *Voir aussi* mesure de débit volumique *Voir aussi* mesure de masse volumique *Voir aussi* mesure de température affichage des valeurs 229 enregistrement des valeurs 228 vérification d'étalonnage, *voir* validation du débitmètre

Ζ

zéro procédure avec paramètres de bus PROFIBUS 240 avec PROFIBUS EDD 238 avec ProLink II 236 avec ProLink III 237 rétablissement de l'ajustage précédent avec ProLink II 236 avec ProLink II 237 rétablissement du zéro d'usine avec paramètres de bus PROFIBUS 240 avec PROFIBUS EDD 238

MMI-20018295 Rev AB 2012

Micro Motion Inc. USA

Worldwide Headquarters 7070 Winchester Circle Boulder, Colorado 80301 T +1 303-527-5200 T +1 800-522-6277 F +1 303-530-8459 www.micromotion.com

Micro Motion Europe

Emerson Process Management Neonstraat 1 6718 WX Ede The Netherlands T +31 (0) 318 495 555 F +31 (0) 318 495 556 www.micromotion.nl

Micro Motion Asia

Emerson Process Management 1 Pandan Crescent Singapore 128461 Republic of Singapore T +65 6777-8211 F +65 6770-8003

Micro Motion United Kingdom

Emerson Process Management Limited Horsfield Way Bredbury Industrial Estate Stockport SK6 2SU U.K. T +44 0870 240 1978 F +44 0800 966 181

Micro Motion Japan

Emerson Process Management 1-2-5, Higashi Shinagawa Shinagawa-ku Tokyo 140-0002 Japan T +81 3 5769-6803 F +81 3 5769-6844

Le logo Emerson est une marque commerciale et une marque de service d'Emerson Electric Co. Micro Motion, ELITE, ProLink, MVD et MVD Direct Connect sont des marques appartenant à l'une des filiales d'Emerson Process Management. Toutes les autres marques sont la propriété de leurs détenteurs respectifs.

