Rosemount[™] 3418

Caudalímetro ultrasónico de gas de ocho vías

Caudalímetro ultrasónico de gas modelo 3418

Máxima exactitud para la transferencia de custodia

El Rosemount 3418 es un caudalímetro ultrasónico de gas de ocho vías diseñado para aplicaciones de transferencia de custodia de gas natural en las que la alta exactitud y el rendimiento fiable a largo plazo son cruciales, como en el caso de las transferencias de gran volumen y en las instalaciones compactas.

Este medidor cordal de ocho vías tiene ocho vías en cuatro ubicaciones opuestas, lo que le permite cancelar los efectos de velocidad asimétrica. El medidor proporciona una mayor resolución del caudal y puede calcular el torbellino de forma más exacta; por lo tanto, compensa fácilmente las distorsiones de caudal no ideales que se producen como resultado de curvaturas de una tubería, tramos rectos más cortos o diseños más reducidos. En consecuencia, se reduce la necesidad de elementos de acondicionamiento de caudal y configuraciones de tuberías de aguas arriba largas, lo que minimiza el espacio ocupado y el coste de la instalación.

Con dieciséis (16) módulos transductores que forman ocho (8) vías cordales, el Rosemount 3418 cuenta con un transmisor y calcula el promedio de las mediciones de la velocidad del fluido en las ocho vías cordales para calcular el flujo total. El transmisor se encarga de todo el control y la temporización para la generación y medición de pulsos acústicos. El procesamiento acústico se lleva a cabo mediante un sistema electrónico 3410 patentado y especializado, diseñado para lograr altas velocidades de muestreo, proporcionar señales ultrasónicas estables y una respuesta óptima de bajo caudal.

El Rosemount 3418, disponible de DN250 a DN1050 (de 10" a 42"), ofrece capacidades de flujo bidireccional, mayor capacidad de flujo y ausencia de caída de presión incremental, lo que reduce el riesgo de medición y minimiza los costes de operación.

El caudalímetro de gas ultrasónico Rosemount 3418 está diseñado para reducir la incertidumbre mediante la reducción de los cambios debidos a los efectos de la instalación. Ofrece una clase de exactitud OIML 0.5 y requiere solo cinco diámetros de tramo recto y sin acondicionador de caudal. Para mejorar aún más la confianza de medición, el medidor está equipado para procesar cálculos de velocidad del sonido en tiempo real y comparar valores teóricos con valores reales utilizando los métodos AGA 10 o GERG 2008. El medidor utilizará datos de composición de gas en tiempo real y datos de presión y temperatura mediante entradas directas. Su rendimiento, inteligencia integrada y exactitud son insuperables.

Figura 1: Basado en un diseño de vías imbricadas patentado de British Gas, en cada medición se integran ocho vías directas para ofrecer inmunidad frente a torbellino y medición de exactitud ultraalta

Aplicaciones típicas

■ Transferencia de custodia en líneas de transporte de gas natural

Lugares de aplicación

- Plantas de energía entradas
- Plantas de procesamiento de gas entradas/salidas
- Sitios de almacenamiento subterráneos entradas/salidas
- Producción de gas en tierra/en altamar
- Estaciones industriales urbanas puntos de recepción/entrega

Características y ventajas

- OIML Clase de exactitud 0.5 con tubería aquas arriba de 5 diámetros y sin acondicionador de caudal
- Las mejores prestaciones de su clase en instalaciones compactas
- Reduzca el tamaño, el peso y los costes de capital de los diseños de los sistemas de medición
- La ausencia de acondicionador de caudal reduce los costes de compresión y bombeo y evita el mantenimiento debido a los bloqueos
- La alta rangeabilidad >100:1 garantiza menos usos del medidor, tamaños de tubería más pequeños y menores costes de capital
- Dispone de robustos transductores T-200 encapsulados de titanio para ofrecer un rendimiento óptimo en entornos húmedos, ácidos y corrosivos (estándar para tamaños de tubería de hasta DN900 o 36" y opcional para DN1050 o 42")
- Los transductores T-200 se pueden extraer de forma segura bajo presión sin herramientas especiales y su diseño sin contacto con el proceso evita la posibilidad de emisiones de gases de efecto invernadero
- El sistema electrónico de la serie 3410 proporciona muestras rápidas, una plataforma electrónica ampliable y un registro de datos de archivo que contiene información de presión, temperatura y composición de gas, lo que permite que el medidor calcule caudales en condición estándar como una computadora de caudal redundante.
- El sistema electrónico de la serie 3410 calcula los valores de volumen, los valores másicos y los valores de energía correctos.
- El sistema electrónico de la serie 3410 calcula la velocidad del sonido a partir de la presión, la temperatura y la composición del gas utilizando AGA 10 2003 y GERG-2008 (AGA 8 Parte 2, 2017)
- La pantalla LED local (opcional) tiene hasta diez variables de desplazamiento que el usuario puede seleccionar.
- El caudalímetro ultrasónico de gas Rosemount 3418 ya está disponible con Smart Meter Verification, para que los usuarios tengan acceso a análisis experto de caudal y obtengan un resultado de estado de medición general intuitivo y simplificado y minimicen el tiempo dedicado a analizar datos. Se puede acceder a esta función nueva por medio de Modbus o usando el software de diagnóstico MeterLink.
- El diagnóstico predictivo permite la detección y la respuesta rápida por parte del personal de la planta en situaciones anormales a fin de evitar alteraciones del proceso y tiempos de inactividad no programados.

Especificaciones estándar

Si los requisitos están fuera de las especificaciones indicadas, consulte a un especialista de producto de Emerson Ultrasonics. Es posible que existan otras ofertas de productos y materiales según la aplicación.

Especificaciones del medidor

Características

Diseño cordal de ocho vías (16 transductores)

Rendimiento del medidor

- La exactitud calibrada de caudal es del ±0,1% de la lectura en todo el rango de calibración de caudal
- OIML Clase de exactitud 0.5 con tubería aquas arriba de 5 diámetros y sin acondicionador de caudal
- La repetibilidad es del ±0,05% de la lectura entre 5 y 100 ft/s (entre 1,5 y 30,5 m/s)

Rango de velocidad

- Nominal de 0,5 a 100 ft/s (de 1,7 a 30 m/s) con prestaciones fuera de rango superiores a 125 ft/s (38 m/s) en algunos tamaños
- El caudalímetro cumple o supera las especificaciones de rendimiento AGA 9 2017 3.ª edición / ISO 17089

Tabla 1: Valores de caudal AGA 9/ISO 17089 (unidades tradicionales de los Estados Unidos)

Tamaño de caudalíme- tro (pulgadas)	De 10 a 24	30	36	42
q _{mín} (ft/s)	1,7	1,7	1,7	1,7
q _t (ft/s)	10	8,5	7,5	CF
q _{máx} (ft/s)	100	85	75	CF

Tabla 2: Valores de caudal AGA 9/ISO 17089 (unidades métricas)

Tamaño de caudalíme- tro (DN)	De 250 a 600	750	900	1050
q _{mín} (m/s)	0,5	0,5	0,5	0,5
q _t (m/s)	3,048	2,591	2,29	CF
q _{máx} (m/s)	30,48	25,91	22,86	CF

Rendimiento de la electrónica

Alimentación

- 10,4 V CC a 36 V CC
- 8 vatios típico, 15 vatios máximo

Clasificaciones mecánicas

Tamaños de tubería

- De 10" a 42" (de DN250 a DN1050)⁽¹⁾
- Todos los medidores usan un diseño patentado British Gas (BG) doble entrelazado

Temperatura de funcionamiento de gas (transductores)

- T-200⁽²⁾: de -58 °F a +257 °F (de -50 °C a 125 °C)
- T-21: de -4 °F a +212 °F (de -20 °C a +100 °C)
- T-41: de -58 °F a +212 °F (de -50 °C a +100 °C)
- T-22: de -58 °F a +212 °F (de -50 °C a +100 °C)

Rango de presión de funcionamiento (transductores)

- T-200⁽²⁾: 15 a 3750 psig (1,03 a 258,55 bar)
- T-21/T-41/T-22: 100 a 4000 psig (6,89 a 275,79 bar)
- T-21/T-41/T-22: 50 psig (3,45 bar) disponible con Qmax reducido⁽³⁾
- T-22: 0 a 3750 psig (3,45 a 258,55 bar)⁽⁴⁾

Bridas

- Cara resaltada y junta en anillo (RTJ) para Clases ANSI de 300 a 2500 (de PN 50 a 420)
- Conectores finales de hub y bridas compactas (opcional)

Compatibilidad con NACE, NORSOK y PED

- Diseñado para cumplir las normas NACE^{®(5)}
- NORSOK disponible a pedido
- PED disponible a pedido

Clasificaciones electrónicas

Temperatura de funcionamiento

- Con transductores T-200: de -40 °F a 257 °F (de -40 °C a 125 °C)
- Con transductores T-21/T-22/T-41: de -40 °F a 212 °F (de -40 °C a 100 °C)

Humedad relativa de funcionamiento

Hasta el 95% sin condensación

Temperatura de almacenamiento

■ De -40 °F a +185 °F (de -40 °C a +85 °C) con un límite de baja temperatura de almacenamiento de -4 °F (-20 °C) para los transductores T-21 y de -58 °F (-50 °C) para los transductores T-41/T-22

Opciones de carcasa de la electrónica

Montaje integral (estándar)

⁽¹⁾ Consulte a la fábrica por tamaños de medidores superiores a 36" (DN900).

⁽²⁾ Disponible para tamaños de tubería de hasta 42". Consulte a la fábrica para conocer las presiones mínimas de funcionamiento por debajo de 100 prio

⁽³⁾ Para obtener información adicional relacionada con los límites de operación, consultar la página 9.

⁽⁴⁾ Para aplicaciones de baja presión por debajo de 100 psig (6,89 bar), el medidor debe estar equipado con soportes de transductor aislados.

⁽⁵⁾ La selección de los materiales aptos para los servicios previstos es responsabilidad del usuario del equipo.

Materiales de construcción

Los materiales de construcción dependen de los requisitos de aplicación, los cuales debe especificar el cliente. Un representante de Emerson puede asesorar sobre materiales, en caso de ser necesario.

Especificación de materiales

Cuerpo y brida

Piezas forjadas

- Acero al carbono ASTM A350 Gr LF2⁽⁶⁾
 De -50 °F a +302 °F (de -46 °C a +150 °C)
- Acero al carbono ASTM A350 Gr LF2⁽⁶⁾
 De –58 °F a +302 °F (de –50 °C a +150 °C)
- Acero inoxidable ASTM A182 Gr F316/F316L (certificación doble)
 De –50 °F a +302 °F (de –46 °C a +150 °C)
- Acero inoxidable dúplex ASTM A182 Gr F51⁽⁷⁾
 De –58 °F a +302 °F (de –50 °C a +150 °C)
- Acero al carbono ASTM A105
 De -20 °F a +302 °F (de -29 °C a +150 °C)

Carcasa del alojamiento

- Estándar: Aluminio ASTM B26 Gr A356.0 T6
- Opcional: Acero inoxidable ASTM A351 Gr CF8M

Soporte de la electrónica

Acero inoxidable

■ 316SS

Componentes del transductor

O-rings de montajes y soportes de transductores

- Estándar: Goma de nitrilo butadieno (NBR)
- Otros materiales disponibles

Montajes y soportes de transductores

- Montajes de acero inoxidable ASTM A564 tipo 630
- Soportes de acero inoxidable ASTM A479 316L
- Montaje Gr 1 INCONEL® ASTM B446 (UNS N06625) (opcional)
- Soporte Gr 1 INCONEL® ASTM B446 (UNS N06625) (opcional)

⁽⁶⁾ Ensayo de impacto según norma ASTM especificada.

⁽⁷⁾ El material A995 4A aún no está aprobado en Canadá.

Especificaciones de pintura

Cuerpo y exterior de bridas

Cuerpo en acero al carbono

2 capas de pintura; imprimación de zinc y capa final en laca acrílica (estándar)

Cuerpo en acero inoxidable o dúplex

■ Pintura (opcional)

Cubierta del transductor

Aluminio

Pintado al polvo

Carcasa del alojamiento

Aluminio

Recubrimiento de conversión y recubrimiento exterior 100% con esmalte de poliuretano

Acero inoxidable

■ Pasivado (opcional)

Tabla 3: Presiones máximas de cuerpos y bridas según materiales de construcción [tamaños de caudalímetros psi de 10" a 42"]. La información de presiones nominales es válida entre –20 °F y +100 °F (de –29 °C a +38 °C). Es posible que otras temperaturas reduzcan la presión nominal máxima de los materiales.

Clase ANSI	Acero al carbono forjado	Acero inoxidable 316/316L forjado	Acero inoxidable dúplex
300	740	720	750
600	1480	1440	1500
900	2220	2160	2250
1500	3705	3600	3750

Tabla 4: Presiones máximas de cuerpos y bridas según materiales de construcción [tamaños de caudalímetros bar de DN250 a DN1050]. La información de presiones nominales es válida entre –20 °F y +100 °F (de –29 °C a +38 °C). Es posible que otras temperaturas reduzcan la presión nominal máxima de los materiales.

PN	Acero al carbono forjado	Acero inoxidable 316/316L forjado	Acero inoxidable dúplex
50	51,1	49,6	51,7
100	102,1	99,3	103,4
150	153,2	148,9	155,1
200	255,3	248,2	258,6
250	425,5	413,7	430,9

Dimensionamiento del caudalímetro

Unidades tradicionales de los Estados Unidos

Se pueden usar Tabla 5 y Tabla 6 para determinar el rango de caudal en las condiciones de referencia para todos los tamaños de caudalímetro. Todos los cálculos son para diámetro interior Schedule 40, +60 °F y composición de gas típica (AGA 8 Amarillo). Estos valores están pensados para orientar en el dimensionamiento. Antes de realizar el pedido, deben confirmarse las dimensiones del caudalímetro con un especialista de productos de Emerson Ultrasonics.

Cálculo de la capacidad del caudalímetro

Para calcular el caudal volumétrico para una velocidad determinada, primero encuentre la capacidad (caudal) en Tabla 5 o Tabla 6 para el tamaño del caudalímetro y la presión de funcionamiento. Seguidamente, multiplique la capacidad por la proporción de la velocidad deseada y divídala entre 100 ft/s para obtener el caudal volumétrico deseado.

El siguiente ejemplo muestra la forma de determinar el caudal horario a 70 ft/s para un caudalímetro de 10" que funciona a 800 psig:

Caudal = 12 362 MSCFH Velocidad = 70 ft/s Respuesta =
$$\frac{12 362 \text{ MSCFH} \times 70 \text{ ft/s}}{100 \text{ ft/s}} = 86530,4 \text{ MSCFH}$$

Tabla 5: Caudales (MSCFH) según la velocidad nominal máx. [de 10 a 24" = 100 ft/s] [30" = 85 ft/s] [36" = 75 ft/s]

Tamaño do metro (pu		10	12	16	18	20	24	30	36	42
Presión	100	1559	2213	3494	4423	5495	7948	10 910	13 862	CF
de funcio- namiento	200	2963	4207	6641	8406	10 446	15 108	20 738	26 349	CF
(psig)	300	4412	6263	9888	12 515	15 552	22 493	30 875	39 229	CF
	400	5906	8384	13 236	16 754	20 819	30 111	41 331	52 117	CF
	500	7448	10 572	16 690	21 126	26 251	37 968	52 117	66 219	CF
	600	9037	12 828	20 252	25 635	31 854	46 071	63 239	80 350	CF
	700	10 675	15 153	23 923	30 281	37 627	54 422	74 701	94 914	CF
	800	12 362	17 547	27 703	35 065	43 572	63 020	86 504	109 910	CF
	900	14 096	20 009	31 590	39 986	49 686	71 863	98 642	125 333	CF
	1000	15 877	22 537	35 581	45 038	55 964	80 943	111 105	141 169	CF
	1100	17 702	25 128	39 671	50 214	62 396	90 246	123 875	157 394	CF
	1200	19 567	27 774	43 850	55 504	68 969	99 752	136 923	173 973	CF
	1300	21 467	30 471	48 107	60 893	75 665	109 437	150 217	190 865	CF
	1400	23 395	33 208	52 428	66 362	82 462	119 267	163 711	208 009	CF
	1500	25 344	35 975	56 797	71 892	89 333	129 205	191 079	242 782	CF
	1600	27 306	38 760	61 193	77 456	96 247	139 205	191 079	242 782	CF
	1700	29 270	41 548	65 595	83 029	103 172	149 221	204 826	260 250	CF
	1800	31 227	44 326	69 981	88 580	110 069	159 197	218 520	277 649	CF
	1900	33 166	47 079	74 327	94 081	116 905	169 083	232 090	294 891	CF
	2000	35 079	49 793	78 612	99 505	123 645	178 832	245 472	311 894	CF

Tabla 6: Caudales (MMSCFD) según la velocidad nominal máx. [de 10" a 24" = 100 ft/s] [30" = 85 ft/s] [36" = 75 ft/s]

Tamaño d metro (pu		10	12	16	18	20	24	30	36	42
Presión	100	37,4	53,1	83,9	106,1	131,9	190,8	261,8	332,7	CF
de funcio- namiento	200	71,1	101,0	159,4	201,8	250,7	362,6	497,7	632,4	CF
(psig)	300	105,9	150,3	237,3	300,4	373,2	539,8	741,0	941,5	CF
	400	141,8	201,2	317,7	402,1	499,6	722,7	991,9	1260	CF
	500	178,7	253,7	400,6	507,0	630,0	911,2	1250,8	1589,3	CF
	600	216,9	307,9	486,1	615,2	764,5	1105,7	1517,7	1928,4	CF
	700	256,2	363,7	574,2	726,7	903,1	1306,1	1792,8	2277,9	CF
	800	296,7	421,1	664,9	841,6	1045,7	1512,5	2076,1	2637,8	CF
	900	338,3	480,2	758,2	959,7	1192,5	1724,7	2367,4	3008,0	CF
	1000	381,1	540,9	854,0	1080,9	1343,1	1942,6	2666,5	3286,2	CF
	1100	424,8	603,1	952,1	1205,1	1497,5	2165,9	2973,0	3777,5	CF
	1200	469,6	666,6	1052,4	1332,1	1655,3	2394,0	3286,2	4175,4	CF
	1300	515,2	731,3	1154,6	1461,4	1816,0	2626,5	3605,2	4580,7	CF
	1400	561,5	797,0	1258,3	1592,7	1979,1	2862,4	3929,1	4992,2	CF
	1500	608,3	863,4	1363,1	1725,4	2144,0	3100,9	4585,9	5826,8	CF
	1600	655,3	930,2	1468,6	1858,9	2309,3	3340,9	4585,9	5826,8	CF
	1700	702,5	997,2	1574,3	1992,7	2476,1	3581,3	4915,8	6246,0	CF
	1800	749,5	1063,8	1679,5	2125,9	2641,7	3820,7	5244,5	6663,6	CF
	1900	796,0	1129,9	1783,8	2257,9	2805,7	4058,0	5570,2	7077,4	CF
	2000	841,9	1195,0	1886,7	2388,1	2967,5	4292,0	5891,3	7485,5	CF

Unidades métricas

Se pueden usar Tabla 7 y Tabla 8 para determinar el rango de caudal en las condiciones de referencia para todos los tamaños de caudalímetro. Todos los cálculos se basan en un orificio Schedule 40, +15 °C y una composición de gas típica (AGA 8 Amarillo). Estos valores están pensados para orientar en el dimensionamiento.

Cálculo de la capacidad del caudalímetro

Para calcular el caudal volumétrico para una velocidad determinada, primero encuentre la capacidad (caudal) en la Tabla 7 y la Tabla 8 para el tamaño del caudalímetro y la presión de funcionamiento. Seguidamente, multiplique la capacidad por la proporción de la velocidad deseada y divídala entre 30,5 m/s para obtener el caudal deseado.

Ejemplo: Determine el caudal horario a 21 m/s para un medidor de DN250 que funcione a 4500 kPag.

Si el caudal = 280 MSCMH y la velocidad = 21 m/s, el cálculo es:

$$\frac{280 \text{ MSCMH} \times 21 \text{ m/s}}{300.5 \text{ m/s}} = 1920,7 \text{ MSCMH}$$

Tabla 7: Caudales (MSCMH) de acuerdo con la velocidad nominal máx. [De DN250 a DN600 = 30,5 m/s] [DN750 = 25,9 m/s] [DN900 = 22,9 m/s]

Tamaño de tro (DN)	caudalíme-	250	300	400	500	600	750	900	1050
Presión de	1000	62	88	139	218	315	432	550	CF
funciona- miento	1500	91	129	204	320	463	635	809	CF
(kPag)	2000	121	171	270	425	615	843	1074	CF
	2500	151	214	339	533	770	1056	1345	CF
	3000	182	259	408	642	929	1274	1622	CF
	3500	214	304	480	754	1091	1496	1905	CF
	4000	247	350	553	869	1257	1724	2195	CF
	4500	280	397	627	987	1427	1957	2491	CF
	5000	314	446	704	1107	1600	2195	2794	CF
	5500	349	495	781	1229	1778	2438	3104	CF
	6000	384	545	861	1354	1959	2686	3420	CF
	6500	420	597	942	1482	2143	2939	3742	CF
	7000	457	649	1025	1612	2331	3460	4405	CF
	7500	495	702	1109	1744	2523	3460	4405	CF
	8000	533	757	1195	1879	2718	3727	4745	CF
	8500	572	812	1281	2015	2915	3997	5090	CF
	9000	611	867	1369	2154	3115	4272	5439	CF
	9500	651	924	1458	2294	3318	4550	5793	CF
	10 000	691	981	1548	2435	3522	4830	6149	CF

Tabla 8: Caudales (MMSCMD) de acuerdo con la velocidad nominal máx. [De DN250 a DN600 = 30,5 m/s] [DN750 = 25,9 m/s] [DN900 = 22,9 m/s]

Tamaño de tro (DN)	caudalíme-	250	300	400	500	600	750	900	1050
Presión de	1000	1,484	2,106	3,325	5,229	7,563	10,372	13,205	CF
funciona- miento	1500	2,182	3,097	4,889	7,690	11,122	15,251	19,418	CF
(kPag)	2000	2,895	4,110	6,489	10,206	14,761	20,242	25,773	CF
	2500	3,626	5,147	8,126	12,780	18,485	25,348	32,273	CF
	3000	4,373	6,207	9,800	15,414	22,293	30,571	38,923	CF
	3500	5,137	7,292	11,512	18,107	26,189	35,914	45,725	CF
	4000	5,919	8,401	13,264	20,862	30,174	41,378	52,682	CF
	4500	6,718	9,536	15,055	23,679	34,248	46,964	59,795	CF
	5000	7,535	10,695	16,885	26,558	38,412	52,674	67,065	CF
	5500	8,369	11,880	18,755	29,499	42,665	58,508	74,492	CF
	6000	9,221	13,089	20,664	32,502	47,009	64,463	82,075	CF
	6500	10 090	14 322	22,612	35,565	51,439	70,538	89,810	CF
	7000	10,975	15,579	24,596	38,686	55,953	76,729	97,692	CF
	7500	11,877	16,859	26,616	41,863	60,549	83,031	105,716	CF
	8000	12,793	18,160	28,670	45,094	65,221	89,438	113,873	CF
	8500	13,723	19,480	30,754	48,372	69,962	95,940	122,151	CF
	9000	14,666	20,818	32,866	51,694	74,766	102,528	130,539	CF
	9500	15,619	22,170	35,002	55,053	79,625	109,190	139,021	CF
	10 000	16,580	23,535	37,157	58,442	84,527	115,913	147,581	CF

Transductores T-200 encapsulados en titanio

Nuevo diseño sin contacto con el proceso

Diseñados para los difíciles requisitos de las aplicaciones de hoy en día, los transductores ultrasónicos T-200 se han diseñado de forma resistente para un elevado rendimiento en los entornos más hostiles, como gases de proceso con aceite, gas húmedo o compuestos corrosivos.

Se ha eliminado prácticamente la posibilidad de corrosión por hidrocarburos gracias al diseño totalmente metálico y sin contacto con el proceso a fin de aumentar la estabilidad y la longevidad. Además, el diseño del T-200 facilita su utilización y mantenimiento. La innovadora cápsula inteligente del transductor, una sola pieza, puede extraerse bajo presión sin herramientas especiales, lo que simplifica el mantenimiento, minimiza el tiempo de inactividad y maximiza la seguridad y la comodidad.

Los transductores T-200 son estándar en tamaños métricos DN250 a DN900 (10" a 36"), pero hay tamaños adicionales disponibles bajo pedido.

Figura 2: Conjunto de transductor T-200

Características y ventajas

- La tecnología de matriz patentada MiniHorn amplifica mecánicamente la señal del transductor, superando atenuaciones de señal o efectos de la reverberación
- Sin contacto con el proceso: El transductor con un encapsulamiento totalmente metálico y externo al proceso es inmune a la suciedad arrastrada por líquidos o fluidos corrosivos como el H₂S
- Reacondicionable: Sencilla modernización de medidores existentes que tengan transductores T-11/T-12 o T-21/T-22
- Fiabilidad a largo plazo: El diseño con transductor aislado ofrece una barrera frente a hidrocarburos corrosivos y amplía la vida de los componentes de transductor
- Extraíble bajo presión: El diseño simplificado de la cápsula inteligente facilita su extracción sin despresurizar la tubería y no requiere una herramienta de extracción a alta presión
- El diseño sin contacto con el proceso evita la posibilidad de emisiones de gases de efecto invernadero durante las operaciones de extracción
- Mayor índice de temperatura: Permite mayores temperaturas de operación y limpieza en línea
- Garantía ampliada: 3 años como estándar

Especificaciones de los transductores

Compatibilidad del producto

■ Tamaños de tubería DN250 a DN1050 (10" a 42")

12

Materiales de construcción

- Carcasa Ti Gr12 / conjunto de vástago 17-4PH (estándar)
- Carcasa Ti Gr12 / conjunto de vástago acero inoxidable 316/316L (opcional)
- Carcasa Ti Gr12 / conjunto de vástago Inconel (opcional)

Tipos de líquidos

■ Hidrocarburos, gases industriales, H₂S (100%)

Temperatura del fluido

■ de -58 °F a +257 °F (de -50 °C a 125 °C)

Presión de funcionamiento

■ 15 a 3750 psig (1,03 a 258,55 bar)

Frecuencia de funcionamiento

■ 125 kHz

Figura 3: Cápsula inteligente de transductor

Seguridad y cumplimiento

Clasificaciones de seguridad

Underwriters Laboratories (UL/cUL)

■ Áreas clasificadas: Clase 1, división 1, grupos C y D

Marca CE según directivas

Atmósferas explosivas (ATEX)

Comisión Electrotécnica Internacional (IECEx)

Aprobación metrológica

NMI/MID

- OIML R137 clase 0.5
- MID clase 1.0

Pantalla LCD local

El sistema electrónico de la serie 3410 ofrece una pantalla de cristal líquido local opcional que utiliza tres líneas para indicar el nombre de la variable, el valor de la variable y los valores de ingeniería. Se puede configurar la pantalla local usando el software MeterLink o AMS Trex Device de Emerson con el protocolo de interfaz HART[®].

La pantalla local muestra hasta 10 elementos, que el usuario puede seleccionar entre 26 variables. La pantalla puede configurarse con unidades de volumen de escala reales o 000, con una base de tiempo ajustable en segundos, horas o días. La velocidad de desplazamiento puede ajustarse entre 1 y 100 segundos (el valor predeterminado es de 5 segundos).

Figura 4: Pantalla LCD local

Tabla 9: Variables en pantalla seleccionables por el usuario

Variables	Descripción
Caudal volumétrico	Sin corregir (real) Corregido (estándar o normal)
Promedio de velocidad de flujo	(no hace falta descripción)
Velocidad de sonido promedio	(no hace falta descripción)
Presión	Fluida, si se utiliza
Temperatura	Fluida, si se utiliza
Salida de frecuencia	1A, 1B, 2A o 2B
Factor K de salida de frecuencia	Canal 1 o 2
Salida analógica	1 o 2
Totales de volumen del día actual	Sin corregir o corregidos (directo o inverso)
Totales de volumen del día anterior	Sin corregir o corregidos (directo o inverso)
Totales de volumen (sin restablecer)	Sin corregir o corregidos (directo o inverso)

Entrada/salida

Tabla 10: Conexiones E/S del módulo de CPU (máximo calibre de cable 18 AWG)

	Tipo de conexión de E/S	Cant.	Descripción
Comunicaciones serie	Puerto serie RS232/RS485	1	■ Modbus RTU/ASCII
			Velocidad en baudios de 115 kbps
			■ Dúplex completo RS232/RS485
			Semidúplex RS485
	Puerto Ethernet (TCP/IP) 100Ba- seT	1	■ Modbus TCP
Entrada digital ⁽¹⁾	Cierre de contactos	1	■ Estado
			Polaridad individual
Entradas analógicas ⁽²⁾	4-20 mA	2	■ AI-1 Temperatura ⁽³⁾
			■ AI-2 Presión ⁽³⁾
Salidas de frecuencia/digitales	TTL/colector abierto	6	Configurable por el usuario (se puede configurar la entrada digital como 6.ª salida de frecuencia/digital)
Salida analógica ⁽²⁾⁽⁴⁾	4-20 mA	1	 Salida analógica de configura- ción independiente

⁽¹⁾ La exactitud de la conversión de analógico a digital está en un rango del ±0,05% del fondo de escala sobre el rango de temperatura de funcionamiento.

Tabla 11: Módulo de expansión de E/S opcional

	Tipo de conexión de E/S	Cant.	Descripción
Comunicaciones serie	Puerto serie RS232/RS485	1	■ Modbus RTU/ASCII
			Velocidad en baudios de 115 kbps
			Semidúplex RS232/RS485
	Conmutador Ethernet	3	■ 100BaseT
			■ Tres puertos
Entrada analógica	4-20 mA	1	Reservado para uso futuro

Ranuras de expansión de E/S opcionales por tipo de alojamiento: Alojamiento estándar: 1 RS232/RS485 semidúplex, 2 hilos O BIEN 1 módulo de expansión de E/S Alojamiento (reacondicionado) extendido: 2 RS232/RS485 semidúplex, 2 hilos O BIEN 1 módulo de expansión de E/S y 1 RS232/RS485 semidúplex, 2 hilos

⁽²⁾ Hay una fuente de alimentación de 24 V CC disponible para alimentar los sensores.

⁽³⁾ AI-1 y AI-2 están aisladas eléctricamente y funcionan en sumidero.

⁽⁴⁾ El error de desviación de escala cero de la salida analógica está en un rango del ±0,1% del fondo de escala, mientras que el error de ganancia está dentro del ±0,2% del fondo de escala. La desviación de salida total está en un rango de ±50 ppm del fondo de escala en °C.

Diagnóstico y software

Reducción significativa en el tiempo necesario para análisis de datos y solución de problemas con la nueva función Smart Meter Verification recién incorporada a la última actualización del firmware de medidores. Márchese con más confianza en sus mediciones gracias a un resultado limpio de verificación de medición, así como resultados de estado de medidor y de proceso.

Todos los caudalímetros ultrasónicos funcionan con el avanzado software MeterLink para simplificar la monitorización y la solución de problemas. Este software avanzado muestra una serie de diagnósticos basados en rendimiento que indican el estado del caudalímetro. Además, los diagnósticos dinámicos basados en el caudal ayudan a que los operadores identifiquen alteraciones de caudal que puedan afectar a la incertidumbre de medición. La versión más reciente de MeterLink se ha optimizado para trabajar con Smart Meter Verification, lo que permite recopilar fácilmente informes de SMV con programación mensual o a demanda.

Figura 5: Baseline Viewer de MeterLink

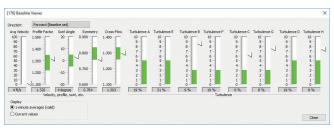
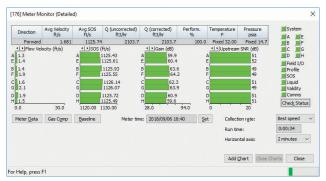



Figura 6: Pantalla del monitor de MeterLink

- El software MeterLink se puede descargar gratuitamente
- Se requiere MeterLink para la configuración del transmisor
 - Los medidores también pueden configurarse con AMS Device Manager, o TREX Device si se utiliza HART®
- MeterLink se conecta a los caudalímetros por Ethernet (recomendado), RS232 o dúplex completo RS485
- Compatible con Microsoft® Windows 7, 8.1 y 10
- Microsoft Office 2010-2019

Tabla 12: Características de medidor, MeterLink y Net Monitor⁽¹⁾

		Medidor	Accesible con MeterLink	Accesible con Net Monitor
SMV	Informes programados o a demanda (PDF o XML)	•	•	•
	Resultados limpios de verificación de medición	•	•	•
	Recopilación automática de informes por grupo de medidores			•

Tabla 12: Características de medidor, MeterLink y Net Monitor⁽¹⁾ (continuación)

		Medidor	Accesible con MeterLink	Accesible con Net Monitor
	Vista general de estado resultado último SMV pro- gramado para varios medidores			•
	Agrupación de todos los informes programados de medidores		•	•
	Priorización de alarmas	•	•	•
Operación	Tabla de datos de componente GC de Modbus configurable	•		
	Comparación de velocidad del sonido ⁽²⁾	•	•	
	Monitorización de estado de transductores	•	•	
	Baseline Viewer		•	
	Pantalla de monitor		•	
	Gráficas múltiples con bandas límite verdes		•	
	Ver formas de onda		•	
	Calculadora de la velocidad del sonido ⁽²⁾		•	
	Temas de ayuda/guía de solución de problemas		•	
	Registros de mantenimiento		•	
Historial	Registros horarios (180 días) y registros diarios (5 años)	•	•	
	Registros de mantenimiento de tendencias		•	
	Gráficos de registros por hora/día		•	
Configuración	Asistente de configuración en campo y asistente de configuración de referencia		•	
	Nombre de usuario identificado en registro de auditoría	•	•	
	Interruptor de protección contra escritura	•		
	Comparar configuración de registros		•	
	Maestro GC - Modbus serie/TCP	•		
	Esclavo Modbus TCP	•		
Alarmas	Alarma/auditoría/registros del sistema	•	•	
	Alarma de acumulaciones en ánima	•	•	
	Alarma de obstrucción	•	•	
	Alarma de perfil anómalo	•	•	
	Alarma de detección de líquido	•	•	
	Alarmas retenidas	•	•	
	Indicador de severidad de alarmas		•	
	Alarma de flujo inverso	•	•	

⁽¹⁾ Net Monitor es una aplicación disponible automáticamente con MeterLink que permite que el usuario monitorice y acceda a todos los caudalímetros ultrasónicos que formen parte de una red.

⁽²⁾ Admite AGA 10 2003 y GERG-2008 (AGA 8 Parte 2, 2017).

^(•) Característica disponible.

Seguridad y cumplimiento

Los caudalímetros ultrasónicos de gas Rosemount modelo 3418 cumplen los estándares mundiales de la industria sobre certificaciones y aprobaciones eléctricas y de seguridad intrínseca. Para acceder a un listado completo de agencias y certificaciones, consulte con un especialista técnico de Emerson Ultrasonics.

Clasificaciones de seguridad

Underwriters Laboratories (UL/cUL)

Áreas clasificadas: Clase I, división 1, grupos C y D

Marca CE según directivas

- Atmósferas explosivas (ATEX)
- Certificado: Demko II ATEX 1006133X
- Marcado: \bigotimes II 2G Ex db ia IIB T4 Gb (-40 °C ≤ T ≤ +60 °C)
- Directiva para equipos a presión (PED)
- Compatibilidad electromecánica (EMC)

INMETRO

Certificado: UL-BR 16.0144XMarcado: Ex db ia IIB T4 Gb

Comisión Electrotécnica Internacional (IECEx)

Marcado: Ex db ia IIB T4 Gb

Número de registro canadiense

■ Certificado: 0F14855

Figura 7: Una cubierta de transductor individual es estándar en caudalímetros Rosemount modelo 3418 DN250 a DN300 (10" a 12").

Aprobación metrológica

OIML

- OIML R137-1 y 2, edición 2012(E)
- Clase 0.5

MID

- Directiva 2014/32/UE (MID MI-002)
- Clase 1.0

ISO 17089-1: 2010 (E)

Figura 8: Las cubiertas de transductores dobles son estándar en caudalímetros Rosemount modelo 3418 de DN400 (16") y mayores

Límites de operación

Si los requisitos están fuera de los siguientes límites de operación para transductores T-21/T-41/T-22/T-200, consulte con un especialista de producto de Emerson Ultrasonics.

Tabla 13: Velocidad máxima recomendada para medidores de tamaño de tubería de 12" y menores (unidades tradicionales de los Estados Unidos)

	Valor de velocidad máxima a 0 psig (ft/s) o más ⁽¹⁾	Capacidad a la velocidad nominal máxima (ACFH) ⁽¹⁾	Diámetro interior Schedu- le STD (pulgadas)
10	100	197 136	10,020
12	100	282 743	12,000

⁽¹⁾ Montajes de transductores aislados combinados con los transductores T-22 necesarios para medidores de tamaño de tubería de DN300 cm (12") y más pequeños para alcanzar de 0 a 689 kPag (de 0 a 100 psig). La presión de funcionamiento mínima de los transductores T-200 depende del tamaño de la tubería. Consultar con fábrica.

Tabla 14: Velocidad máxima recomendada para medidores de tamaño de tubería de 16" y mayores (unidades tradicionales de los Estados Unidos)

Tamaño nominal del medidor (pul- gadas)	Valor de velocidad máxima a 50 psig (ft/s)	Capacidad entre 50 y 100 psig (ACFH) ⁽¹⁾	Valor de velocidad máxima a 100 psig (ft/s) o más	Capacidad a la velocidad nominal máx. (ACFH) ⁽¹⁾	Diámetro interior Schedule STD (pul- gadas)
16	50	228 318	100	456 635	15,250
18	50	292 131	100	584 263	17,250
20	50	363 799	100	727 598	19,250
24	50	530 696	100	1 061 392	23,250
30	45	755 952	85	1 427 909	29,250
36	37,5	914 912	75	1 829 824	35,250
42	37,5	1 252 879	75	2 505 758	41,250

⁽¹⁾ Las capacidades son para DI de medidor equivalente a Schedule 40 (o STD).

Tabla 15: Velocidad máxima recomendada para medidores de tamaño de tubería DN300 y menores (unidades métricas)

Tamaño nominal de cau- dalímetro (DN)		Capacidad a la velocidad nominal máxima (ACMH) ⁽¹⁾	Diámetro interior Schedu- le STD (mm)
250	30,5	5582	254,5
300	30,5	8006	303,2

⁽¹⁾ Montajes de transductores aislados combinados con los transductores T-22 necesarios para medidores de tamaño de tubería de DN300 cm (12") y más pequeños para alcanzar de 0 a 689 kPag (de 0 a 100 psig). La presión de funcionamiento mínima de los transductores T-200 depende del tamaño de la tubería. Consultar con fábrica.

Tabla 16: Velocidad máxima recomendada para medidores de tamaño de tubería DN400 y mayores (unidades métricas)

Tamaño nominal de caudalímetro (DN)	Valor de velocidad máxima a 345 kPag (m/s)	Capacidad entre 345 y 689 kPag (ACMH) ⁽¹⁾	Valor de velocidad máxima a 689 kPag o más (m/s)	Capacidad a la velocidad nominal máxima (ACMH) ⁽¹⁾	Diámetro interior Schedule STD (mm)
400	15,2	6465	30,5	12 930	387,4
450	15,2	7917	30,5	20 603	438,2
500	15,2	10 301	30,5	30 055	489
600	15,2	15 027	26	40 433	590,6

Tabla 16: Velocidad máxima recomendada para medidores de tamaño de tubería DN400 y mayores (unidades métricas) *(continuación)*

		Capacidad entre 345 y 689 kPag (ACMH) ⁽¹⁾	Valor de velocidad máxima a 689 kPag o más (m/s)	Capacidad a la velocidad nominal máxima (ACMH) ⁽¹⁾	Diámetro interior Schedule STD (mm)
750	11,4	25 907	23	51 814	743
900	11,4	34 479	23	70 955	895,4

⁽¹⁾ Las capacidades son para DI de medidor equivalente a Schedule 40 (o STD).

Pesos y dimensiones

Figura 9: Clave de dimensión para medidores de DN200 a DN300 (de 8" a 12") con cubierta de transductor individual (consulte la Tabla 17 y la Tabla 18)

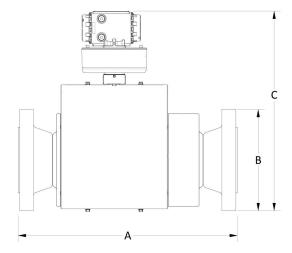
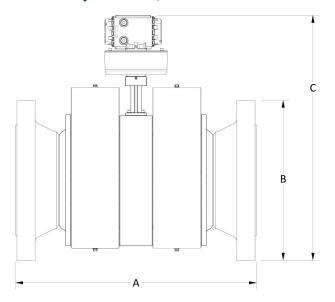
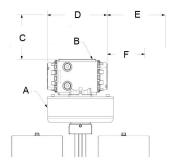



Figura 10: Clave de dimensión para medidores DN400 y más grandes (a partir de 16") con cubierta de transductores dobles (consulte la Tabla 17 y la Tabla 18)

Tablas

En el diagrama de claves de dimensiones de caudalímetros (Figura 9 y Figura 10) se ilustran las mediciones de componentes de los caudalímetros que corresponden a A, B y C en la tabla siguiente. Todos los pesos y las dimensiones son para el alojamiento estándar de la electrónica. El plano de aprobación certificado incluirá los pesos y las dimensiones reales.


Tabla 17: Datos dimensionales y de peso (unidades tradicionales de los Estados Unidos) [tamaños de tubería de 10" a 28", ángulo de puerto de 60°] [tamaños de tubería de 30" y superiores, ángulo de puerto de 75°]

Tamaño no (pulgadas)	minal de tubería	10	12	16	20	24	30	36	42
300 ANSI	Peso (libras)	1250	1550	2000	3100	4550	4950	6200	CF
	A (pulgadas)	33,75	36,50	37,50	42,75	47,50	44,50	46,50	CF
	B (pulgadas)	17,50	20,50	25,50	30,50	36,00	43,00	50,00	CF
	C (pulgadas)	34,50	36,50	40,50	45,50	50,50	57,00	63,50	CF
600 ANSI	Peso (libras)	1400	1750	2300	3450	5150	5650	7250	CF
	A (pulgadas)	37,00	39,00	40,50	45,50	50,75	48,00	50,25	CF
	B (pulgadas)	20,00	22,00	27,00	32,00	37,00	44,50	51,75	CF
	C (pulgadas)	35,50	37,50	41,50	46,00	51,00	58,00	64,50	CF
900 ANSI	Peso (libras)	1800	2500	3450	5000	8000	10 200	15 150	CF
	A (pulgadas)	44,00	48,75	51,00	53,12	62,13	61,50	67,00	CF
	B (pulgadas)	21,50	24,00	27,75	33,75	41,00	48,50	57,50	CF
	C (pulgadas)	36,50	39,00	42,50	47,50	53,50	61,50	69,50	CF
1500 ANSI	Peso (libras)	2250	3300	4950	7200	11 200	CF	CF	CF
	A (pulgadas)	49,75	55,75	59,00	62,00	71,50	CF	CF	CF
	B (pulgadas)	23,00	26,50	32,50	38,75	46,00	CF	CF	CF
	C (pulgadas)	37,00	40,00	45,00	50,00	56,00	CF	CF	CF

Tabla 18: Datos dimensionales y de peso (unidades tradicionales de los Estados Unidos) [tamaños de tubería de DN250 a DN700, ángulo de puerto de 60°] [tamaños de tubería de DN750 y superiores, ángulo de puerto de 75°]

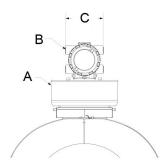

Tamaño n (DN)	ominal de tubería	250	300	400	500	600	750	900	1050
PN 50	Peso (kg)	567	703	907	1406	2064	2245	2812	CF
	A (mm)	857	927	953	1086	1207	1130	1181	CF
	B (mm)	445	521	648	775	914	1092	1270	CF
	C (mm)	876	927	1029	1156	1283	1448	1613	CF
PN 100	Peso (kg)	635	794	1043	1565	2336	2563	3289	CF
	A (mm)	940	991	1029	1156	1289	1219	1276	CF
	B (mm)	508	559	686	813	940	1130	1314	CF
	C (mm)	902	953	1054	1168	1295	1473	1638	CF
PN 150	Peso (kg)	816	1134	1565	2268	3629	4627	6872	CF
	A (mm)	1118	1238	1295	1349	1578	1562	1702	CF
	B (mm)	546	610	705	857	1041	1232	1461	CF
	C (mm)	927	991	1080	1207	1359	1562	1765	CF
PN 250	Peso (kg)	1021	1497	2245	3266	5080	CF	CF	CF
	A (mm)	1264	1416	1499	1575	1816	CF	CF	CF
	B (mm)	584	673	826	984	1168	CF	CF	CF
	C (mm)	940	1016	1143	1270	1422	CF	CF	CF

Figura 11: Dimensiones de la carcasa del alojamiento⁽⁸⁾

- A. Base del alojamiento
- B. Carcasa del alojamiento
- C. Extracción 2" (51 mm)
- D. 9,5" (241 mm)
- E. Extracción de la placa 4,75" (121 mm)
- F. Extracción de la tapa final 1,75" (44 mm)

Figura 12: Dimensiones adicionales de la carcasa del alojamiento

- A. Base del alojamiento
- B. Carcasa del alojamiento
- C. 5,9" (150 mm)

Instalación recomendada

Los siguientes dibujos representan las longitudes mínimas de tubería recomendadas para la instalación del caudalímetro ultrasónico de gas Rosemount 3418. Consulte a un especialista técnico de Emerson Ultrasonics para obtener recomendaciones de instalación para la aplicación específica. Pueden adaptarse otras longitudes o acondicionares de caudal.

Figura 13: Recomendación de tuberías para caudalímetro ultrasónico de gas (sin acondicionador de caudal)

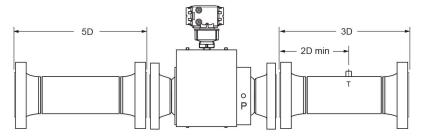
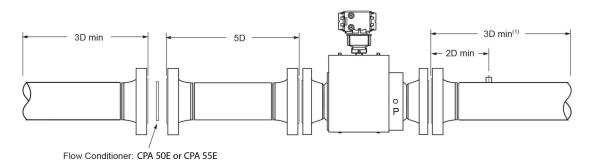
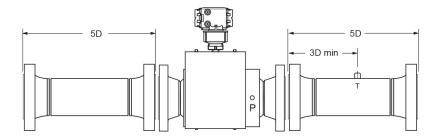
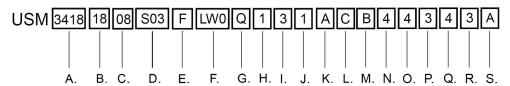




Figura 14: Recomendación de tuberías para caudalímetro ultrasónico de gas con acondicionador de caudal (opcional)

3D mín.⁽¹⁾ = Es posible que se requiera una mayor longitud en la tubería para las tomas adicionales (es decir, sonda de muestra, pozo de prueba, etc.).

Figura 15: Recomendación de tuberías para caudalímetro ultrasónico de gas bidireccional


Nota

- Para obtener los mejores resultados, se recomienda acondicionar el caudal
- D = Tamaño de tubería nominal en pulgadas (por ejemplo, tamaño de tubería de 10"; 5D = 50")
- T = Ubicación de la medición de temperatura

Punto de medición de presión incluido en el cuerpo del caudalímetro

Código de configurador

Este es un ejemplo de código de configurador. Este documento tiene fines exclusivamente informativos. No se incluyen todas las opciones, y algunas opciones dependen de otras. Para obtener ayuda en el diseño de su medidor ideal, consultar a la fábrica.

A. Dispositivo	K. Montaje de la electrónica
B. Tamaño de tubería	L. CPU/pantalla/teclas
C. Presión nominal	M. Módulo de expansión
D. Tipo de brida	N. Inalámbrico
E. Materiales de cuerpo y bridas	O. Formato de las etiquetas (tamaño de tubería/presión nomi- nal/parámetros de caudal)
F. Schedule (diámetro interior)	P. Idioma de las etiquetas
G. Conjunto de transductor	Q. Certificación de directiva de presión
H. Tipo de carcasa	R. Aprobaciones eléctricas
I. Tomas de presión	S. Aprobación metrológica
J. Tipo de conducto	

Categoría	Código	Descripción
Dispositivo	3418	3418 ocho vías
Tamaño de tubería	10	DN250 (10")
	12	DN300 (12")
	14	DN350 (14")
	16	DN400 (16")
	18	DN450 (18")
	20	DN500 (20")
	24	DN600 (24")
	26	DN650 (26")
	30	DN750 (30")
	36	DN900 (36") ⁽¹⁾
	42	DN1050 (42") ⁽¹⁾

(1) Consulte a la fábrica por tamaños de medidores superiores a DN900 (36").

Presión nominal	03	PN 50 / ANSI 300
	05	PN 100 / ANSI 600
	06	PN 150 / ANSI 900
	07	PN 250 / ANSI 1500

	08	PN 420 / ANSI 2500
Categoría	Código	Descripción
Tipo de brida	S01	RF / RF
	S02	RTJ / RTJ
	S03	FEFA / FEFA
	S04	Brida compacta (especial)
Materiales de cuerpo y bridas	F ⁽¹⁾	Forjado: Acero al carbono/acero inoxidable 316/acero inoxidable dúplex

(1) Consulte a la fábrica los códigos de modelos específicos de los materiales deseados.

Schedule (diámetro interior)	LW0	Schedule LW
	020	Schedule 20
	030	Schedule 30
	040	Schedule 40
	060	Schedule 60
	080	Schedule 80
	100	Schedule 100
	120	Schedule 120
	140	Schedule 140
	160	Schedule 160
	STD	Schedule STD
	XS0	Schedule XS0
Conjunto de transductor	1	T200 (de –50 °C a +12 °C) - Vástago estándar 17-4PH, O-ring de NBR
	2	T200 (de –50 °C a +12 °C) - Vástago estándar 17-4PH, O-ring de FKM
	4	T200 (de –40 °C a +125 °C) - Vástago Inconel, O-ring de FKM ⁽¹⁾
	5	T200 (de –40 °C a +125 °C) - Vástago opcional (316/316L), NBR ⁽¹⁾
	6	T200 (de –40 °C a +125 °C) - Vástago opcional (316/316L), FKM ⁽¹⁾
	G	T-21 (de –20 °C a +100 °C) - Montajes/soportes estándar, O-ring de NBR
	I	T-22 (de –50 °C a +100 °C) - Montajes estándar aislados / soportes 316L, O-ring de NBR
	L	T-21 (de –20 °C a +100 °C) - Montajes en Inconel / soportes en Inconel, O-ring en FKM
	N	T-41 (de –50 °C a +100 °C) - Montajes/soportes estándar, O-ring de NBR
	0	T-21 (de –20 °C a +100 °C) - Montajes Inconel / soportes de 316L, O-ring de FKM

	Z	T-22 (de –40 °C a +100 °C) - Montajes Inconel aislados / so-
		portes Inconel, O-ring de FKM

(1) Disponible para tamaños de tubería de hasta 42". Consulte a la fábrica para conocer las presiones mínimas de funcionamiento por debajo de 100 psig.

Categoría	Código	Descripción
Tipo de carcasa	1	Aluminio estándar
	2	Acero inoxidable opcional
	3	Aluminio (reacondicionamiento) opcional ⁽¹⁾

(1) Selecciones de módulo de expansión D, E y F solo disponibles con alojamiento reacondicionado en aluminio. Alojamiento reacondicionado disponible solo con las selecciones de aprobación eléctrica 1 y 2.

Tomas de presión 1 NPT de 1/2"		
1	NPT de 1/2"	
3	Pipeta	
1	NPT de 3/4"	
2	M20 (se requieren reductores)	
A	Montaje integral (hasta +60 °C)	
J	Tipo de E/S 4 (6 salidas de frecuencia/digitales, 1 salida analógica)	
К	Tipo de E/S 4 (6 salidas de frecuencia/digitales, 1 salida analógica)/pantalla	
A	Ninguno	
В	Un RS232 serie	
С	Un RS485 serie	
D	Dos RS232 serie ⁽¹⁾	
	D03 N3232 3CHC	
E	Dos RS485 serie (dos hilos) ⁽¹⁾	
	1	

(1) Selecciones de módulo de expansión D, E y F solo disponibles con alojamiento reacondicionado en aluminio. Alojamiento reacondicionado disponible solo con las selecciones de aprobación eléctrica 1 y 2.

Inalámbrico	A	Ninguno
	В	тним
Formato de las etiquetas (ta- maño de tubería/presión no- minal/parámetros de caudal)	1	Pulgadas / ANSI / Tradicional de los Estados Unidos
	2	Pulgadas / ANSI / Métrico
	3	DN / PN / Tradicional de los Estados Unidos
	4	DN / PN / Métrico

Categoría	Código	Descripción
Idioma de las etiquetas	1	Inglés
	2	Francés
	3	Ruso

Categoría	Código	Descripción
	4	Chino
Certificación de directiva de	1	Ninguno
presión	2	PED (debe seleccionarse la aprobación eléctrica 2)
	3	CRN (Canadian Boiler Branch)
	4	Rusia (EAC)
Aprobaciones eléctricas	1	UL / c-UL
	2	ATEX/IECEx
	3	INMETRO
	4	EAC - Rusia
Aprobación metrológica	A	Ninguno
	В	Unión Europea, Directiva MID
	С	China (CPA-2015-F101)
	D	Brasil (INMETRO)
	F	EAC - Rusia

Para obtener más información: Emerson.com

 $^{\hbox{\scriptsize @}}2022$ Emerson. Todos los derechos reservados.

El documento de Términos y condiciones de venta de Emerson está disponible a pedido. El logotipo de Emerson es una marca comercial y de servicio de Emerson Electric Co. Rosemount es una marca que pertenece a una de las familias de compañías de Emerson. Todas las demás marcas son de sus respectivos propietarios.

