Rosemount[™] 3814

Caudalímetro ultrasónico de líquidos

Caudalímetro ultrasónico de líquidos Rosemount 3814

Inteligencia digital en el trabajo

Ideado para las aplicaciones de transferencia de custodia, el nuevo caudalímetro ultrasónico de líquidos Rosemount 3814 se ha diseñado para proporcionar mediciones de alta precisión de hidrocarburos líquidos conforme al capítulo 5.8 de API y a OIML R117. El avanzado medidor de cuatro vías ofrece una rangeabilidad excepcional y linealidad para minimizar los líquidos perdidos y no contabilizados.

El medidor mide los tiempos de tránsito de los pulsos ultrasónicos que pasan a través del líquido en cuatro planos paralelos. Los transductores ultrasónicos integrados transmiten y reciben señales con la diferencia en los tiempos de tránsito de los pulsos aguas abajo y aguas arriba directamente proporcional a la velocidad del fluido. Gracias a sus mediciones precisas del tiempo de tránsito aguas arriba o abajo y a que no tiene piezas móviles, el medidor es ideal para mediciones bidireccionales.

La nueva generación de electrónica de la serie Rosemount 3810 funciona con el medidor para aumentar considerablemente la tasa de muestreo y ofrecer la captura de elevados volúmenes de datos, amplios registros horarios y diarios incluidos. El sistema electrónico optimizado presenta un conjunto integrado de CPU y placa de E/S listo para conectar, y una pantalla LCD local (opcional) diseñados para aumentar la fiabilidad, simplificar el mantenimiento y facilitar la expansión futura.

Los operadores pueden monitorear y resolver fácilmente problemas del medidor 3814 en tiempo real desde un PC o un portátil. El software de diagnóstico MeterLink[™] es una interfaz de usuario intuitiva que ofrece información crucial, como diagnóstico funcional, de proceso y sistemático, a fin de aumentar la fiabilidad y reducir la incertidumbre de medición.

Contenido

Caudalímetro ultrasónico de líquidos Rosemount 3814	2
Especificaciones estándar	5
Materiales de construcción	
Rangos de caudal estándar	10
Rendimiento típico del medidor	11
Pantalla LCD local	12
Entrada/salida	13
Software del medidor	14
Pesos y dimensiones	15
Seguridad y cumplimiento	19
Instalación recomendada	
Información para pedidos	22

Figura 1: Caudalímetro ultrasónico de líquidos Rosemount 3814

Aplicación típica

Transferencia de custodia

Lugares de aplicación

- FPSO (Floating Production Storage and Off-loading)
- Plataformas petroleras en altamar
- Tuberías de petróleo crudo
- Tuberías de productos refinados
 - Etano/GLP/gasolina/diésel/combustible de aviación
- Carga y descarga de embarcaciones, barcazas y vagones
- Almacenamiento de tanques

Características y ventajas

- Precisión y repetibilidad de transferencia de custodia con registros de datos de alta capacidad para contabilidad y auditoría
- La estabilidad de medición reduce la incertidumbre del factor del medidor.
- El diseño de paso total evita la caída de presión incremental y reduce los costes de energía.
- Al no tener piezas móviles, se reducen los costos de mantenimiento y se evita la calibración periódica, a menos que las autoridades metrológicas locales o las directrices de la compañía indiquen que es necesaria.
- Transductores reemplazables en campo, que no están en contacto con el proceso
- El amplio rango de caudal proporciona flexibilidad del diseño.
- Las capacidades de caudal bidireccional simplifican la instalación y reducen el tiempo de arranque.
- La electrónica de la serie 3810 proporciona muestras y salidas rápidas, una plataforma electrónica ampliable y un registro de datos de archivo con información detallada por hora y por día.
- La pantalla LCD local (opcional) tiene hasta diez variables de desplazamiento que el usuario puede seleccionar

■ El software de diagnóstico MeterLink™ permite acceder a un análisis de caudal experto y brinda una visualización intuitiva del estado del medidor.

- Se comunica el diagnóstico predictivo y se procesa la información de las variables, lo que permite una respuesta rápida por parte del personal de la planta en situaciones anormales a fin de evitar alteraciones del proceso y tiempos de inactividad no programados.
- El caudalímetro Rosemount 3814 forma parte de la amplia variedad de dispositivos inteligentes de campo de Emerson sobre los que se construye la arquitectura digital de planta PlantWeb™.

Acceda a la información cuando la necesite con las etiquetas de activo

Los dispositivos más actuales cuentan con una etiqueta de activo única en código QR que permite acceder a información serializada directamente desde el dispositivo. Con esta funcionalidad, usted puede:

- Acceder a planos, diagramas, documentación técnica e información de resolución de problemas del dispositivo en su cuenta MyEmerson
- Mejorar el tiempo medio hasta la reparación y mantener la eficiencia
- Tener la seguridad de que ha localizado el dispositivo correcto
- Eliminar el largo proceso de encontrar y transcribir placas de identificación para ver la información de activos

Especificaciones estándar

Si los requisitos están fuera de las especificaciones indicadas, consulte a un especialista de producto de Emerson Ultrasonics. Según la aplicación, es posible que se disponga de un rendimiento mejorado para otros productos y ofertas de materiales.

Especificaciones del medidor

Características

- Medición basada en el tiempo de tránsito
- Cuerpo del medidor con tramo de tubería de paso total
- Diseño cordal de cuatro vías (ocho transductores)

Rendimiento del medidor

- La linealidad es un ±0,15% de valor medido sobre un rango de 1,2 a 12,2 m/s (4 a 40 ft/s)
- La linealidad es un ±0,20% de valor medido sobre un rango de 0,6 a 12,2 m/s (2 a 40 ft/s) (opcional)

Incertidumbre del factor de medición

<±0,027% (API MPMS, capítulo 5, sección 8, tabla B-1)

Rango de velocidad

0,6 a 12,2 m/s (2 a 40 ft/s) con un rango extendido de 0,3 a 14,6 m/s (1 a 48 ft/s)

Calibración

- Laboratorio de calibración de caudal certificado por ISO 17025 disponible para todos los medidores
- Opciones de calibración adicionales disponibles a petición

Rendimiento de la electrónica

Alimentación

- 10,4 V CC a 36 V CC
- 8 vatios típico, 15 vatios máximo

Clasificaciones mecánicas

Tamaños de tubería

DN100 a DN600 (de 4 in a 24 in)(1)

Temperatura de funcionamiento del producto

- Estándar: de -58 °F a +212 °F (de -50 °C a +100 °C)
- Opcional: de -58 °F a +302 °F (de -50 °C a +150 °C)

Rango de presión de funcionamiento

■ De 0 a 155 bar (de 0 a 2250 psig)⁽¹⁾

Bridas

- Cara resaltada y junta en anillo (RTJ) para PN 20, 50, 100 y 150 (ANSI 150, 300, 600 y 900)⁽²⁾
- Clasificaciones ANSI más altas disponibles a pedido

Cumplimiento NACE y NORSOK

- Diseñado para cumplir las normas NACE⁽²⁾
- NORSOK disponible a pedido

Clasificaciones electrónicas

Temperatura de funcionamiento

De -40 °F a +140 °F (de -40 °C a +60 °C)

Humedad relativa de funcionamiento

Hasta 95% sin condensación

Temperatura de almacenamiento

De -40 °F a +185 °F (de -40 °C a +85 °C)

Opciones de carcasa de la electrónica

- Montaje integral (estándar)
- Montaje remoto (opcional) con cable de 15 ft (4,6 m)
 - Obligatorio para temperaturas de proceso superiores a +140 °F (+60 °C)

⁽¹⁾ Consulte a la fábrica sobre los tamaños mayores a DN600 (24 in) y sobre valores nominales de presión superiores a PN 150 (ANSI 900) u otras opciones de brida.

⁽²⁾ La selección de los materiales aptos para los servicios previstos es responsabilidad del usuario del equipo.

Materiales de construcción

Especificación de materiales

Cuerpo y brida

Moldeado

Acero al carbono Gr LCC ASTM A352⁽³⁾

Acero inoxidable Gr CF8M 316 ASTM A351

Acero inoxidable Gr CF8M 316L ASTM A351

■ Acero inoxidable dúplex Gr 4A ASTM A995⁽⁴⁾

Piezas forjadas

■ Acero al carbono Gr LF2 ASTM A350⁽³⁾

Acero inoxidable Gr F316 ASTM A182

■ Acero inoxidable Gr F316L ASTM A182

■ Acero inoxidable dúplex Gr F51 ASTM A182⁽⁴⁾

Acero al carbono ASTM A105

Carcasa del alojamiento

- Aluminio ASTM B26 Gr A356.0 T6
- Acero inoxidable Gr CF8M ASTM A351

Componentes del transductor

O-ring de la carcasa del transductor

Estándar: Goma de nitrilo butadieno (NBR)

⁽³⁾ Ensayo de impacto según norma ASTM especificada.

⁽⁴⁾ El material A995 4A no está disponible en Canadá.

Otros materiales disponibles

Carcasa del transductor

- Acero inoxidable ASTM A479 316L con material de capas de acoplamiento propio
- Gr 1 INCONEL® ASTM B446 (UNS N06625) (opcional)

Prensaestopas

Cloropreno/caucho de nitrilo

Especificaciones de pintura

Cuerpo y brida

Cuerpo de acero al carbono

2 capas de pintura; imprimación de zinc y capa final en laca acrílica (estándar)

Cuerpo en acero inoxidable o dúplex

Pintura (opcional)

Carcasa del alojamiento

Aluminio

Recubrimiento de conversión de cromato con esmalte de poliuretano

Acero inoxidable

Pasivado

Tabla 1: Presiones máximas de cuerpos y bridas según materiales de construcción (tamaños de caudalímetros bar de DN100 a DN600).⁽¹⁾

PN	Acero al carbono moldeado	Acero al carbono forjado	Acero inoxidable moldeado 316, ace- ro inoxidable 316L, acero inoxidable forjado 316	Acero inoxidable forjado 316L	Acero inoxidable dúplex
20	20,0	19,7	19,0	15,9	20,0
50	51,7	51,1	49,6	41,4	51,7
100	103,4	102,1	99,3	82,7	103,4
150	155,1	153,2	148,9	124,1	155,1

⁽¹⁾ La información de presiones nominales es válida de –20 °F a +100 °F (de –29 °C a +38 °C). Es posible que otras temperaturas reduzcan la presión nominal máxima de los materiales.

Tabla 2: Presiones máximas de cuerpos y bridas según materiales de construcción (tamaños de caudalímetros psi de 4 in a 24 in)⁽¹⁾

Clase ANSI	Acero al carbono moldeado	Acero al carbono forjado	Acero inoxidable moldeado 316, ace- ro inoxidable 316L, acero inoxidable forjado 316	Acero inoxidable forjado 316L	Acero inoxidable dúplex
150	290	285	275	230	290
300	750	740	720	600	750

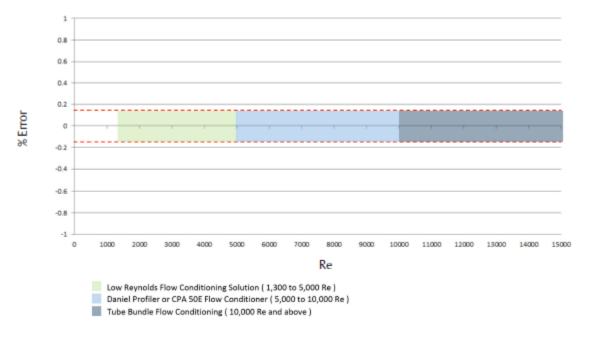
Tabla 2: Presiones máximas de cuerpos y bridas según materiales de construcción (tamaños de caudalímetros psi de 4 in a 24 in)⁽¹⁾ *(continuación)*

Clase ANSI	Acero al carbono moldeado	Acero al carbono forjado	Acero inoxidable moldeado 316, ace- ro inoxidable 316L, acero inoxidable forjado 316	Acero inoxidable forjado 316L	Acero inoxidable dúplex
600	1500	1480	1440	1200	1500
900	2250	2220	2160	1800	2250

Rangos de caudal estándar

Tabla 3: Rangos de caudal (unidades métricas)

		Velocidad de	el fluido (m/s)		Caudal (m³/h)			
minal de caudalíme- tro (DN)	(mm)	tubería	Mín.	Máx.	Sobrerran- go	Mín.	Máx.	Sobrerran- go
100	102,26	Sch 40	0,61	12,2	14,6	18	360	433
150	154,05	Sch 40	0,61	12,2	14,6	41	818	982
200	202,72	Sch 40	0,61	12,2	14,6	71	1.417	1700
250	254,51	Sch 40	0,61	12,2	14,6	112	2.233	2.679
300	303,23	Sch 40	0,61	12,2	14,6	158	3.170	3.803
400	381,00	Sch 40	0,61	12,2	14,6	250	5.004	6.005
450	428,65	Sch 40	0,61	12,2	14,6	317	6.334	7.601
500	477,82	Sch 40	0,61	12,2	14,6	394	7.871	9.445
600	574,65	Sch 40	0,61	12,2	14,6	569	11.383	13.660


Tabla 4: Rangos de caudal (unidades tradicionales de los Estados Unidos)

Tamaño no-	DI medidor			del fluido (ft/s)	Caudal (BPH)		
minal del medidor (in)	(in)	tubería	Mín.	Máx.	Sobrerran- go	Mín.	Máx.	Sobrerran- go
4	4,026	Sch 40	2	40	48	113	2.267	2.721
6	6,065	Sch 40	2	40	48	257	5.146	6.175
8	7,981	Sch 40	2	40	48	446	8.910	10.692
10	10,020	Sch 40	2	40	48	702	14.045	16.853
12	11,938	Sch 40	2	40	48	997	19.936	23 923
16	15,000	Sch 40	2	40	48	1.574	31.474	37.769
18	16,876	Sch 40	2	40	48	1.992	39.839	47.807
20	18,812	Sch 40	2	40	48	2.475	49.504	59.405
24	22,624	Sch 40	2	40	48	3.580	71.599	85.919

Rendimiento típico del medidor

El siguiente gráfico representa el rendimiento del medidor en dos fluidos de alta viscosidad que muestran un error del medidor basado en el número Reynolds (Re) y el caudal (m³/h).

Figura 2: Recomendaciones de acondicionamiento de caudal para fluidos de alta viscosidad

Pantalla LCD local

El sistema electrónico de la serie 3810 ofrece una pantalla de cristal líquido local opcional que utiliza tres líneas para indicar el nombre de la variable, el valor de la variable y las unidades de ingeniería. La configuración de la pantalla local es compatible con el software MeterLink™ o con el comunicador portátil de campo Fisher AMS 475 que se basa en el protocolo de interfaz HART®.

La pantalla local muestra hasta 10 elementos, que el usuario puede seleccionar entre 26 variables. La pantalla puede configurarse con unidades de volumen de escala reales o 000, con una base de tiempo ajustable en segundos, horas o días. La velocidad de desplazamiento puede ajustarse entre 1 y 100 segundos (el valor predeterminado es de cinco segundos).

Figura 3: Pantalla LCD local

Tabla 5: Variables en pantalla seleccionables por el usuario

Variables	Descripción
Volumetric Flow Rate (Indice de caudal volumétrico)	Sin corregir (real)
	Corregido (estándar o normal)
Average Flow Velocity (Velocidad de caudal promedio)	No hace falta descripción.
Average Speed of Sound (Velocidad de sonido promedio)	No hace falta descripción.
Pressure (Presión)	Fluida (si se utiliza)
Temperature (Temperatura)	Fluida (si se utiliza)
Frequency Output (Salida de frecuencia)	1A, 1B, 2A o 2B
Frequency Output K-factor (Factor K de salida de frecuencia)	Canal 1 o 2
Analog Output (Salida analógica)	1 0 2
Current Day's Volume Totals (Volumen total del día actual)	Sin corregir o corregidos (directo o inverso)
Previous Day's Volume Totals (Volumen total del día anterior)	Sin corregir o corregidos (directo o inverso)
Total Volume Totals (Totales de volumen) (sin restablecer)	Sin corregir o corregidos (directo o inverso)

Entrada/salida

Tabla 6: Conexiones E/S del módulo de CPU (máximo calibre de cable 18 AWG)

	Tipo de conexión de E/S	Cant.	Descripción
Comunicaciones en serie	Puerto serie RS232/RS485	1	■ RTU/ASCII de Modbus
			■ Velocidad en baudios de 115 kbps
			■ Dúplex completo de RS232/RS485
			■ Semidúplex RS485
	Puerto Ethernet (TCP/IP) 100BaseT	1	■ Modbus TCP
Entrada digital ⁽¹⁾	Cierre de contactos	1	■ Estatus
			Polaridad individual
Entradas analógicas ⁽²⁾	4-20 mA	2	■ AI-1 Temperatura ⁽³⁾
			■ AI-2 Presión ⁽³⁾
Salidas de frecuencia/digita- les	TTL/colector abierto	3	Configurado por el usuario
Salida analógica ⁽²⁾⁽⁴⁾	4-20 mA	2	Salida analógica de configuración indepen- diente
			 Cumple HART® 7, consulte a la fábrica acerca de HART 5

⁽¹⁾ La exactitud de la conversión de analógico a digital está en un rango del ±0,05% del fondo de escala sobre el rango de temperatura de funcionamiento.

Tabla 7: Módulo de expansión de E/S analógica opcional

•	5 ,		
	Tipo de conexión de E/S	Cant.	Descripción
Comunicaciones en serie	Puerto serie RS232/RS485	1	■ RTU/ASCII de Modbus
			■ Velocidad en baudios de 115 kbps
			■ Semidúplex RS232/RS485
	Puerto Ethernet	1	■ 100BaseT
			■ Tres puertos
Salida analógica	4-20 mA	1	Reservado para uso futuro

⁽²⁾ Hay una fuente de alimentación de 24 voltios CC disponible para alimentar los sensores.

 ⁽³⁾ AI-1 y AI-2 están aisladas eléctricamente y funcionan en sumidero. En la entrada hay una resistencia en serie para poder conectar comunicadores HART® y así configurar sensores.
 (4) El error de desviación de escala cero de la salida analógica está en un rango del ±0,1% del fondo de escala, mientras que el error de

⁽⁴⁾ El error de desviación de escala cero de la salida analógica está en un rango del ±0,1% del fondo de escala, mientras que el error de ganancia está dentro del ±0,2% del fondo de escala. La desviación de salida total está en un rango de ±50 ppm del fondo de escala en °C

Software del medidor

Generalidades sobre MeterLink

El innovador software MeterLink brinda a los usuarios acceso a amplia información de diagnóstico que se presenta en un formato gráfico intuitivo, lo cual simplifica la complejidad usual de la medición de caudal.

Esta información crucial permite a su personal trabajar de manera predictiva en lugar de reactiva.

- El software MeterLink se incluye sin costo junto con el medidor
- Se requiere MeterLink para la configuración del transmisor
- El software MeterLink requiere RS-232, RS-485 dúplex total o Ethernet (recomendado)
- Compatible con Microsoft® Windows 7, 8.1 y 10 y con Microsoft Office de 2003 a 2016

Características de MeterLink

Algoritmos de análisis potentes

- Visualización, análisis y almacenamiento de formas de onda
- Registros de alarmas por día y por hora y recuperación de historial de auditoría en archivos Excel o
- Gráficos de registros por día y por hora
- Indicador de alerta de flujo inverso
- Alarmas que muestran primero la causa principal
- Indicador de alarmas con retención independiente
- Registros de mantenimiento de tendencias
- Comparación de configuraciones del medidor almacenadas en registros de Excel
- Calibración de entradas analógicas

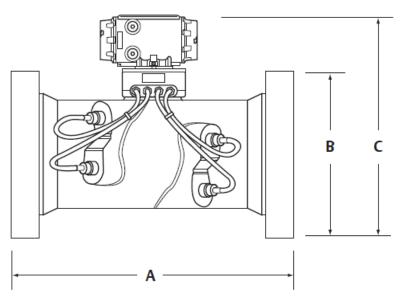
- Interfaz intui-

 Vistas resumidas y detalladas para la información del rendimiento del medidor
 - Registros de mantenimiento integrados e informes de inspección
 - Soporte de directorio de medidores
 - Visualización de varios gráficos simultáneamente
 - Denominación de archivos automática y almacenamiento organizado; admite cientos de medidores

Arranque rápido ■

- Fácil actualización del firmware del medidor
- Configuración Modbus y HART
- Field Setup Wizard (Asistente de configuración en el campo)
- Configuración de la pantalla local

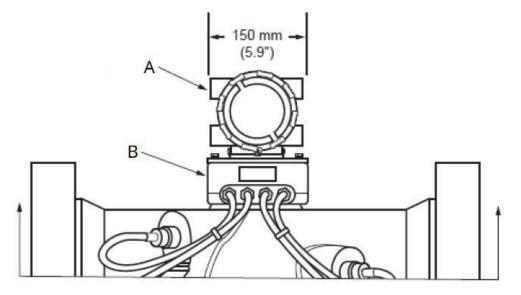
Conectividad versátil


- Ethernet
- Puerto serie
- Módem

PlantWeb[™]

Además, los medidores se pueden configurar con AMS Device Manager o con el comunicador de campo 375/475 si se utiliza HART[®].

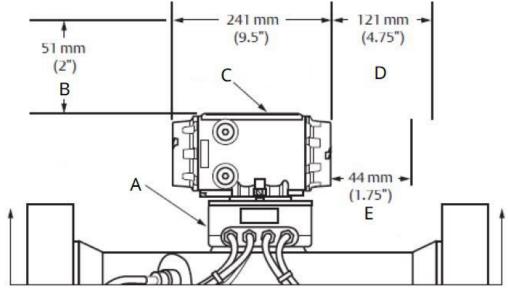
Pesos y dimensiones


Figura 4: Clave de dimensiones de medidores

Nota

Consulte la Tabla 8 y la Tabla 9.

Figura 5: Posición en línea de la carcasa del alojamiento



- A. Carcasa del alojamiento
- B. Base del alojamiento

Nota

Las dimensiones se expresan en milímetros (in).

Figura 6: Posición opcional de la carcasa del alojamiento

La carcasa del alojamiento se puede girar 360 grados en incrementos de 90 grados.

- A. Base del alojamiento
- B. Extracción
- C. Carcasa del alojamiento
- D. Extracción de la placa
- E. Extracción de la tapa final

Nota

Las dimensiones se expresan en milímetros (in).

Tablas de pesos y dimensiones

En el diagrama de claves de dimensiones de caudalímetros (Figura 4) se indican las dimensiones A, B y C de componentes de caudalímetros que aparecen en la tabla siguiente. Los pesos y las dimensiones solo son para el material de acero al carbono estándar de fábrica. Para todos los demás materiales, consulte a fábrica. Los planos de aprobación certificados incluirán los pesos y las dimensiones reales.

Tabla 8: Datos dimensionales y de peso aproximados (unidades métricas)

Tamaño nominal de tube- ría (DN)		100	150	200	250	300	400	450	500	600
PN 20	Peso (kg)	94	137	192	282	368	463	522	567	817
	A (mm)	406,4	457,2	546,1	622,3	660,4	762	800	901,7	990,6
	B (mm)	228,6	279,4	342,9	406,4	482,6	596,9	635	698,5	812,8
	C (mm)	449,6	505,5	563,9	627,4	688,3	789,9	846	891,5	1005,8
PN 50	Peso (kg)	103	152	218,6	320,2	415,5	567	628	1084	1669
	A (mm)	406,4	457,2	546,1	622,3	660,4	762	800	902	991
	B (mm)	254	317,5	381	444,5	520,7	648	711	775	914
	C (mm)	462,3	525,8	581,7	645,2	708,7	813	869	930	1057
PN 100	Peso (kg)	112	177,8	250,8	385,6	465,8	631	678	1189	1801
	A (mm)	406,4	457,2	546,1	622,3	660,4	762	800	902	991
	B (mm)	273,1	355,6	419,1	508	558,8	685,8	743	813	940
	C (mm)	472,4	543,6	602	678,2	726,4	833,1	884	930	1212
PN 150	Peso (kg)	122,9	202,8	372	459	815	1202	1420	1667	3261
	A (mm)	419,1	470	698,5	774,7	876,3	1054	914	940	1499
	B (mm)	292,1	381	469,9	546,1	609,6	705	787	857	1041
	C (mm)	480,1	556,3	640,1	703,6	645,2	866	922	1001	1151

Tabla 9: Datos dimensionales y de peso aproximados (unidades tradicionales de los Estados Unidos)

Tamaño nominal de tube- ría (in)		4 in	6 in	8 in	10 in	12 in	16 in	18 in	20 in	24 in
150 ANSI	Peso (lb)	207	301	424	622	811	1020	1150	1250	1800
	A (in)	16,0	18,0	21,5	24,5	26,0	30,0	31,5	35,5	39
	B (in)	9,0	11,0	13,5	16,0	19,0	23,5	25	27,5	32
	C (in)	17,7	19,9	22,2	24,7	27,1	31,1	33,3	35,1	39,6
300 ANSI	Peso (lb)	227	335	482	706	916	1250	1385	2390	3680
	A (in)	16,0	18,0	21,5	24,5	26,0	30,0	31,5	35,5	39
	B (in)	10,0	12,5	15,0	17,5	20,5	25,5	28	30,5	36
	C (in)	18,2	20,7	22,9	25,4	27,9	32	34,2	36,6	41,6
600 ANSI	Peso (lb)	247	392	553	850	1027	1391	1495	2622	3970
	A (in)	16,0	18,0	21,5	24,5	26,0	30,0	31,5	35,5	39
	B (in)	10,8	14,0	16,5	20,0	22,0	27,0	29,25	32,0	37
	C (in)	18,6	21,4	23,7	26,7	28,6	32,8	34,8	37,3	47,7
900 ANSI	Peso (lb)	271	447	820	1012	1797	2650	3130	3675	7190
	A (in)	16,5	18,5	27,5	30,5	34,5	41,5	36	37	59
	B (in)	11,5	15,0	18,5	21,5	24	27,75	31	33,75	41
	C (in)	18,9	21,9	25,2	27,7	25,4	34,1	36,3	39,4	45,3

Nota

CF: Consulte a la fábrica sobre los tamaños mayores a DN600 (24 in).

Seguridad y cumplimiento

El caudalímetro ultrasónico Rosemount 3814 cumple todas las normas internacionales de la industria relacionadas con las certificaciones y aprobaciones de seguridad intrínseca y eléctricas. Para acceder a un listado completo de agencias y certificaciones, consulte a un especialista de producto de Emerson Ultrasonics.

Clasificaciones de seguridad

Underwriters Laboratories (UL/cUL)

Áreas clasificadas: Clase I, división 1, grupos C y D

Marca CE según directivas

- Atmósferas explosivas (ATEX)
- Certificado: Demko II ATEX 1006133X
- Marca \bigcirc II 2G Ex d ia IIB T4 Gb (-40 °C ≤ T ≤ +60 °C)
- Directiva para equipos a presión (PED)
- Compatibilidad electromecánica (EMC)

INMETRO

Certificado: UL-BR 16.0144X

Marca: Ex d [ia] IIB T4 Gb IP66W

Comisión Electrotécnica Internacional (IECEx)

■ Marca: Ex d ia IIB T4

Clasificaciones ambientales

Aluminio

- NEMA 4
- IP66 según EN60529

Acero inoxidable

- NEMA 4X
- IP66 según EN60529

Aprobaciones metrológicas

Unión europea (TC 8224)

- WELMEC guía 8.8 en MID
- OIML R117-1 Edición 2007 (E)
- MID clase 0.3

Figura 7: Carcasa de aluminio para el sistema electrónico de la serie 3810 con pantalla opcional.

Instalación recomendada

Longitudes de tubería recomendadas

Los siguientes dibujos representan las longitudes de tubería recomendadas para la instalación del caudalímetro ultrasónico de líquidos Rosemount 3814. Consulte a un especialista de producto de Emerson Ultrasonics para obtener recomendaciones de instalación para aplicaciones específicas (por ejemplo, mediciones de números de Reynolds bajos). Pueden adaptarse otras longitudes o acondicionadores de caudal.

Figura 8: Recomendación de tuberías para caudalímetro ultrasónico de líquidos (sin acondicionador de caudal)

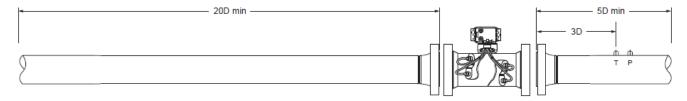
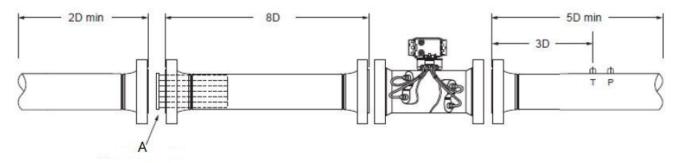
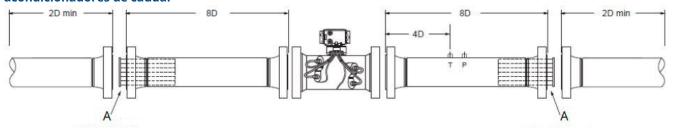




Figura 9: Recomendación de tuberías para caudalímetro ultrasónico de líquidos con acondicionador de caudal

A. Acondicionador de caudal

Figura 10: Recomendación de tuberías para caudalímetro ultrasónico de líquidos bidireccional con acondicionadores de caudal

A. Acondicionador de caudal

Nota

- A. Para obtener los mejores resultados, Emerson recomienda el acondicionamiento de caudal.
- B. D = Tamaño de tubería nominal en pulgadas (por ejemplo, tamaño de tubería de 6"; 10D = 60")
- C. P = Ubicación de la medición de presión
- D. T = Ubicación de la medición de temperatura
- E. Se recomiendan haces de tubos; son aceptables los acondicionadores de caudal de alto rendimiento (como Rosemount Profiler).

Información para pedidos

Configurador de productos en línea

Muchos de los productos se pueden configurar en línea mediante el Configurador de productos. Seleccione el botón **Configure (Configurar)** o visite Emerson.com/MeasurementInstrumentation para comenzar. Esta herramienta cuenta con validación continua y lógica, lo que permite configurar los productos de forma más rápida y precisa.

Especificaciones y opciones

Consulte la sección Especificaciones y opciones para obtener más detalles sobre cada configuración. El comprador del equipo debe ocuparse de establecer las especificaciones y seleccionar los materiales, las opciones o los componentes de los productos. Consulte la sección Selección de materiales para obtener más información.

Códigos de modelo

Los códigos de modelo contienen información relativa a cada producto. Los códigos exactos del modelo pueden variar; en la Ejemplo de código de modelo se muestra un ejemplo de un código de modelo típico.

Ejemplo de código de modelo

3814060803S01M0805111ACAA1111A

Componentes del modelo requeridos

Dispositivo

Código	Descripción
3814	3814 4-vías

Tamaño de tubería

Código	Descripción
04	DN100 (4 in)
06	DN150 (6 in)
08	DN200 (8 in)
10	DN250 (10 in)
12	DN300 (12 in)
16	DN400 (16 in)
18	DN450 (18 in)
20	DN500 (20 in)
24	DN600 (24 in)

Presión nominal

Código	Descripción
01	PN 20 / 150 ANSI
03	PN 50 / 300 ANSI
05	PN 100 / 600 ANSI
06	PN 150 / 900 ANSI

Tipo de brida

Có	ódigo	Descripción
9	S01	RF / RF
9	S02	RTJ / RTJ
9	S04	Brida compacta (NORSOK)

Materiales de cuerpo y bridas

Código	Descripción
M ⁽¹⁾	Acero fundido LCC/acero inoxidable 316/acero inoxidable 316L/acero inoxidable dúplex
F ⁽¹⁾	Acero al carbono forjado/acero inoxidable 316/acero inoxidable dúplex

⁽¹⁾ Consulte a la fábrica la codificación específica del modelo de materiales.

Schedule (diámetro interior)

Código	Descripción
LW0	Schedule LW
020	Schedule 20
030	Schedule 30
040	Schedule 40
060	Schedule 60
080	Schedule 80
100	Schedule 100
120	Schedule 120
140	Schedule 140
160	Schedule 160
ESTÁNDAR	Schedule STD
XS0	Schedule XS
XXS	Extra, extrafuerte/uso solo en tamaños de tubería DN150 y DN200 (6 in y 8 in)

Conjunto de transductor

Código	Descripción
5	LT-08 (de -58 °F a 275 °F [de -50 °C a +135 °C]) con O-rings NBR DN100 a DN250 (de 4 in a 10 in [de 101 mm a 254 mm])

Código	Descripción
6	LT-09 (de -58 °F a 275 °F [de -50 °C a +135 °C]) con O-rings NBR DN300 a DN600 (de 12 in a 24 in [de 304,8 mm a 609 mm])
7	LT-08 (de -40 °F a 302 °F [de -40 °C +150 °C]) con O-rings FKM
8	LT-09 (de -40 °F a 302 °F [de -40 °C +150 °C]) con O-rings FKM
А	LT-04 (de -58 °F a 275 °F [de -50 °C a +135 °C]) con O-rings NBR DN100 a DN250 (de 4 in a 10 in [de 101 mm a 254 mm])
В	LT-05 (de -58 °F a 275 °F [de -50 °C a +135 °C]) con O-rings NBR DN300 a DN600 (de 12 in a 24 in [de 304,8 mm a 609 mm])
С	LT-04 (de -40 °F a 302 °F [de -40 °C +150 °C]) con O-rings FKM
D	LT-05 (de -40 °F a 302 °F [de -40 °C +150 °C]) con O-rings FKM

Tipo de carcasa/alimentación de entrada

Código	Descripción
1	Aluminio; 10,4-36 V CC
2	Acero inoxidable; 10,4-36 V CC

Futuro

Código	Descripción
1	Ninguno

Tipo de conducto

Código	Descripción
1	_{3/4} in. NPT
2	Reductor M20

Montaje de la electrónica

Código	Descripción
А	Montaje integral (hasta +140 °F [+60 °C])
В	Montaje remoto con cables de transductor de 15 pies (4,5 m) (hasta +212 °F [+100 °C])
С	Montaje remoto 15 pies (4,5 m) (hasta +302 °F [+150 °C])
E	Montaje integral (hasta +140 °F [+60 °C]) con cables armados cubiertos

CPU/pantalla

Código	Descripción
С	E/S completa, sin pantalla
D	E/S completa, con pantalla

Módulo de expansión

Código	Descripción
А	Ninguno
В	RS-232 serie
С	RS-485 (a 2 hilos) serie
G	Módulo de expansión de E/S

Inalámbrico

Código	Descripción
А	Ninguno
В	тним

Formato etiquetado

(Tamaño de tubería/presión nominal/parámetros de caudal)

Código	Descripción
1	Pulgadas / ANSI / Tradicional de los Estados Unidos
2	Pulgadas / ANSI / Métrico
3	DN / PN / Tradicional de los Estados Unidos
4	DN / PN / Métrico

Idioma de las etiquetas (para todas las etiquetas)

Código	Descripción
1	Inglés
2	Francés
3	Ruso
4	Chino

Certificación de directiva de presión

Código	Descripción
1	Ninguno
2	PED (debe seleccionarse el código de aprobación eléctrica 2)
3	CRN (Canadian Boiler Branch)

Aprobaciones eléctricas

Código	Descripción
1	Aprobación UL / c-UL
2	ATEX/IECEx

Nota

Se debe seleccionar el código de certificación de directiva de presión 2

Aprobaciones metrológicas

Código	Descripción
А	Ninguno
В	Unión europea (TC 8224), OIML

Nota

Este documento tiene fines exclusivamente informativos. No se incluyen todas las opciones, y algunas opciones dependen de otras. Para obtener ayuda en el diseño del medidor ideal, consulte a la fábrica.

Para obtener más información: Emerson.com

 $^{\hbox{\scriptsize @}}2024$ Emerson. Todos los derechos reservados.

El documento de Términos y condiciones de venta de Emerson está disponible a pedido. El logotipo de Emerson es una marca comercial y de servicio de Emerson Electric Co. Rosemount es una marca que pertenece a una de las familias de compañías de Emerson. Todas las demás marcas son de sus respectivos propietarios.

