Rosemount[™] 3814

Ultraschall-Durchflussmesssystem für Flüssigkeiten

Rosemount 3814 Ultraschall-Durchflussmesssystem für Flüssigkeiten

Digitale Intelligenz im Einsatz

Das neue Rosemount 3814 Ultraschall-Durchflussmesssystem für Flüssigkeiten, das speziell für den eichpflichtigen Verkehr entwickelt wurde, gewährleistet äußerst genaue Messungen von flüssigen Kohlenwasserstoffen im Einklang mit API Chapter 5.8 und OIML R117. Das fortschrittliche Messsystem mit vier Messpfaden bietet ein herausragendes Messspannenverhältnis und eine hohe Linearität zur Minimierung von Flüssigkeitsverlusten und Fehlerfassungen.

Das Messsystem misst die Laufzeit von Ultraschallimpulsen, die auf vier parallelen Ebenen durch die Flüssigkeit laufen. Integrierte Ultraschall-Messwandler senden und empfangen Signale, wobei die Laufzeitdifferenz der ausund einlaufseitigen Impulse proportional zur gemessenen Strömungsgeschwindigkeit des Mediums ist. Aufgrund der genauen Messung der ein- und auslaufseitigen Signallaufzeiten und des Fehlens von beweglichen Teilen ist das Messsystem ideal für bidirektionale Messungen geeignet.

Die leistungsstarke Rosemount 3810 Elektronik der nächsten Generation sorgt in Kombination mit dem Messsystem für einen deutlichen Anstieg der Abtastrate und die Erfassung großer Datenvolumen einschließlich umfassender Stunden- und Tagesprotokolle. Die moderne Elektronik enthält ein direkt einsetzbares, integriertes CPU- und E/A-Steckmodul sowie eine lokale LCD-Anzeige (optional), um die Zuverlässigkeit zu erhöhen, die Wartung zu vereinfachen und zukünftige Erweiterungen zu ermöglichen.

Anwender können das Messsystem 3814 problemlos in Echtzeit von einem PC oder Laptop-Computer aus überwachen und eventuelle Fehler beheben. Die MeterLink[™]-Diagnosesoftware verfügt über eine intuitive Benutzeroberfläche, über die wichtige Informationen, einschließlich Funktions-, Prozess- und Systemanalysen, angezeigt werden, um die Zuverlässigkeit zu erhöhen und die Messunsicherheit zu reduzieren.

Inhalt

Rosemount 3814 Ultraschall-Durchflussmesssystem für Flüssigkeiten	2
Standardspezifikationen	5
Werkstoffe	7
Standardmäßige Durchflussbereiche	10
Typische Messsystemleistung	11
Lokales LCD-Display	12
Eingang/Ausgang	
Messsystem-Software	14
Gewichte und Abmessungen	15
Sicherheit und Compliance	19
Empfohlene Installation	
Bestellinformationen	22

Abbildung 1: Rosemount 3814 Ultraschall-Durchflussmesssystem für Flüssigkeiten

Typische Anwendung

Eichpflichtiger Verkehr

Anwendungsorte

- Schwimmende Produktions-, Lager- und Verladeeinheiten (FPSO)
- Offshore-Plattformen
- Rohöl-Pipelines
- Pipelines für Raffinerieerzeugnisse
 - Ethan/LPG/Benzin/Diesel/Flugzeugtreibstoff
- Einrichtungen zum Be- und Entladen Schiffe, Frachtkähne und Eisenbahnwaggons
- Tankanlagen

Merkmale und Vorteile

- Genauigkeit und Reproduzierbarkeit für den eichpflichtigen Verkehr mit umfassender Datenprotokollierung zur Rechenschaftslegung und Auditierung
- Hohe Messstabilität zur Reduzierung der Unsicherheit des Messsystemfaktors
- Kein zunehmender Druckverlust und Senkung der Energiekosten durch Bauweise mit Volldurchgang
- Keine beweglichen Teile und somit reduzierte Wartungskosten und Entfall periodischer Kalibrierungen, sofern diese nicht durch für das Messwesen zuständige Behörden vor Ort oder durch Unternehmensrichtlinien gefordert werden
- Vor Ort austauschbare, nicht mediumberührte Messwandler
- Großer Durchflussbereich für ein hohes Maß an Flexibilität bei der Konstruktion
- Eignung für bidirektionalen Durchfluss und somit schnellere Inbetriebnahme
- Elektronik der Serie 3810 für die schnelle Erfassung und Ausgabe von Messwerten, eine erweiterbare Elektronikplattform und eine umfassende Datenprotokollierung und -archivierung mit detaillierten Informationen auf Stunden- und Tagesbasis
- Lokale LCD-Anzeige (optional) mit bis zu zehn benutzerwählbaren Scroll-Variablen

■ MeterLink[™]-Diagnosesoftware für den Zugriff auf Durchflussanalysen auf Expertenniveau und einen intuitiven Einblick in den Messsystemzustand

- Weitergabe von prädiktiven Diagnoseergebnissen und Verarbeitung von Messdaten, damit die Anlagenmitarbeiter von der Norm abweichende Situationen schnell erkennen und entsprechend darauf reagieren können, um Prozessstörungen und ungeplante Abschaltungen zu vermeiden
- Das Rosemount 3814 Ultraschall-Durchflussmesssystem ist Teil des umfassenden Emerson-Portfolios an intelligenten Feldgeräten für den Einsatz in einer PlantWeb™-Architektur für digitale Anlagen

Greifen Sie mithilfe von Asset-Tags auf Informationen zu, wenn Sie sie benötigen

Neu ausgelieferte Geräte verfügen über einen individuellen QR-Code-Asset-Tag, mit dessen Hilfe Sie ausgehend von dem Gerät direkt auf Informationen zu der betreffenden Geräteserie zugreifen können. Vorteile dieser Funktion:

- Zugriff auf Gerätezeichnungen, Diagramme, technische Dokumentationen und Informationen zur Fehlerbehebung in Ihrem MyEmerson-Konto
- Verkürzung der mittleren Reparaturzeit und Aufrechterhaltung der Effizienz Ihrer Anlagen
- 100%ige Gewissheit, dass das richtige Gerät lokalisiert wurde
- Kein zeitaufwendiges Lokalisieren und Transkribieren von Typenschildern, um Zugriff auf die Geräteinformationen zu erhalten

Standardspezifikationen

Wenn Ihre Anforderungen außerhalb der aufgeführten Spezifikationen liegen, wenden Sie sich bitte an einen Emerson-Spezialisten für Ultraschallprodukte. Je nach Anwendung sind möglicherweise Produkte mit verbesserter Leistung und andere Werkstoffangebote erhältlich.

Messsystemspezifikationen

Eigenschaften

- Messung auf Basis der Signallaufzeit
- Messsystemgehäuse als Rohrleitungsstück mit Volldurchgang
- Vier Messpfade (acht Messwandler) mit Direktpfadtechnologie

Leistungsmerkmale des Messsystems

- Die Linearität beträgt ±0,15 % des Messwerts über einen Bereich von 1,2 bis 12,2 m/s (4 bis 40 Fuß/s)
- Die Linearität beträgt ±0,20 % des Messwerts über einen Bereich von 0,6 bis 12,2 m/s (2 bis 40 Fuß/s) (optional)

Unsicherheit des Messsystemfaktors

< ±0,027 % (API MPMS, Kapitel 5, Abschnitt 8, Tabelle B-1)

Geschwindigkeitsbereich

0,6 bis 12,2 m/s (2 bis 40 Fuß/s) mit erweitertem Bereich von 0,3 bis 14,6 m/s (1 bis 48 Fuß/s)

Kalibrierung

- Nach ISO 17025 zertifiziertes Durchflusskalibrierlabor für alle Messsysteme verfügbar
- Weitere Kalibrieroptionen auf Anfrage verfügbar

Elektronikdaten

Spannungsversorgung

- 10,4 VDC bis 36 VDC
- 8 W typisch, 15 W max.

Mechanische Daten

Nennweiten

DN100 bis DN600 (4 Zoll bis 24 Zoll)(1)

Betriebstemperatur des Produkts

- Standardmäßig: -58 °F bis +212 °F (-50 °C bis +100 °C)
- Optional: -58 °F bis +302 °F (-50 °C bis +150 °C)

Betriebsdruckbereich

0 bis 155 bar (0 bis 2250 psig)⁽¹⁾

Flansche

- Dichtleiste (Raised Face, RF) und Dichtringverbindung (Ring Type Joint, RTJ) für PN 20, 50, 100 und 150 (ANSI 150, 300, 600 und 900)⁽²⁾
- Höhere ANSI-Einstufungen auf Anfrage verfügbar

NACE- und NORSOK-Konformität

- Konzipiert für NACE-Konformität⁽²⁾
- NORSOK auf Anfrage verfügbar

Angaben zur Elektronik

Betriebstemperatur

-40 °F bis +140 °F (-40 °C bis +60 °C)

Relative Luftfeuchtigkeit im Betrieb

Bis zu 95 %, nicht kondensierend

Lagertemperatur

-40 °F bis +185 °F (-40 °C bis +85 °C)

Elektronikgehäuseoptionen

- Integrierte Montage (Standard)
- Abgesetzte Montage (optional) mit einem Kabel mit einer Länge von 15 Fuß (4,6 m)
 - Erforderlich für eine Prozesstemperatur über +140 °F (+60 °C)

⁽¹⁾ Für Nennweiten über DN600 (24 Zoll), Druckeinstufungen höher als PN 150 (ANSI 900) und andere Flanschoptionen Rücksprache mit dem Werk halten.

⁽²⁾ Es liegt in der Verantwortung des Anwenders, die geeigneten Werkstoffe für die beabsichtigten Einsatzbereiche auszuwählen.

Werkstoffe

Werkstoffspezifikationen

Gehäuse und Flansch

Gussteile

- ASTM A352 Gr LCC Kohlenstoffstahl⁽³⁾
 -50 °F bis +302 °F (-46 °C bis +150 °C)
- ASTM A351 Gr CF8M 316 Edelstahl
 - -50 °F bis +302 °F (-46 °C bis +150 °C)
- ASTM A351 Gr CF8M 316L Edelstahl
 - -50 °F bis +302 °F (-46 °C bis +150 °C)
- ASTM A995 Gr 4A Duplex-Edelstahl⁽⁴⁾
- -58 °F bis +302 °F (-50 °C bis +150 °C)

Schmiedeteile

- ASTM A350 Gr LF2 Kohlenstoffstahl⁽³⁾
 - -50 °F bis +302 °F (-46 °C bis +150 °C)
- ASTM A182 Gr F316 Edelstahl
 - -50 °F bis +302 °F (-46 °C bis +150 °C)
- ASTM A182 Gr F316L Edelstahl
 - -50 °F bis +302 °F (-46 °C bis +150 °C)
- ASTM A182 Gr F51 Duplex-Edelstahl⁽⁴⁾
 - -58 °F bis +302 °F (-50 °C bis +150 °C)
- ASTM A105 Kohlenstoffstahl
 - -20 °F bis +302 °F (-29 °C bis +150 °C)

Schutzgehäuse

- ASTM B26 Gr A356.0 T6 Aluminium
- ASTM A351 Gr CF8M Edelstahl

Messwandler-Komponenten

O-Ring des Messwandlergehäuses

Standard: Nitril-Butadien-Kautschuk (NBR)

⁽³⁾ Stoßprüfung gemäß ASTM-Norm.

⁽⁴⁾ Werkstoff A995 4A ist in Kanada nicht verfügbar.

Andere Werkstoffe auf Anfrage erhältlich

Messwandlergehäuse

- ASTM A479 316L Edelstahl mit passendem proprietärem Schichtmaterial
- INCONEL® ASTM B446 (UNS N06625) Gr 1 (optional)

Kabelverschraubung

Chloropren/Nitrilkautschuk

Lack-Spezifikationen

Gehäuse und Flansch

Gehäuse aus Kohlenstoffstahl

Zweischichtlackierung; Zinkgrundierung und Acryl-Decklack (Standard)

Gehäuse aus Edelstahl oder Duplex

Lackierung (optional)

Schutzgehäuse

Aluminium

Chromatiert mit Polyurethanbeschichtung

Edelstahl

Passiviert

Tabelle 1: Maximaldruck von Gehäuse und Flansch nach Werkstoff (in bar für Messsystem-Nennweiten von DN100 bis DN600)⁽¹⁾

PN	Kohlenstoffstahl gegossen	Kohlenstoffstahl geschmiedet	Gegossener Edel- stahl 316, Edelstahl 316L, geschmiede- ter Edelstahl 316	Geschmiedeter Edelstahl 316L	Duplex-Edelstahl
20	20,0	19,7	19,0	15,9	20,0
50	51,7	51,1	49,6	41,4	51,7
100	103,4	102,1	99,3	82,7	103,4
150	155,1	153,2	148,9	124,1	155,1

⁽¹⁾ Die Angaben zur Druckstufe gelten für -20 °F bis +100 °F (-29 °C bis +38 °C). Bei anderen Temperaturen können die Werkstoffe andere maximale Druckwerte aufweisen.

Tabelle 2: Maximaldruck von Gehäuse und Flansch nach Werkstoff (in psi für Messsystem-Nennweiten von 4 Zoll bis 24 Zoll)⁽¹⁾

ANSI-Klasse	Kohlenstoffstahl gegossen	Kohlenstoffstahl geschmiedet	Gegossener Edel- stahl 316, Edelstahl 316L, geschmiede- ter Edelstahl 316	Geschmiedeter Edelstahl 316L	Duplex-Edelstahl
150	290	285	275	230	290
300	750	740	720	600	750
600	1.500	1.480	1.440	1.200	1.500

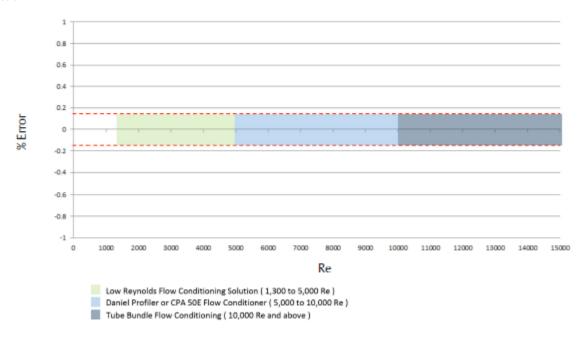
Tabelle 2: Maximaldruck von Gehäuse und Flansch nach Werkstoff (in psi für Messsystem-Nennweiten von 4 Zoll bis 24 Zoll)⁽¹⁾ (Fortsetzung)

ANSI-Klasse	Kohlenstoffstahl gegossen	geschmiedet	Gegossener Edel- stahl 316, Edelstahl 316L, geschmiede- ter Edelstahl 316	Geschmiedeter Edelstahl 316L	Duplex-Edelstahl
900	2.250	2.220	2.160	1.800	2.250

Standardmäßige Durchflussbereiche

Tabelle 3: Durchflussbereiche (metrische Einheiten)

Messsystem- Messsys-		Rohrlei-	Strömungs	geschwindigke	eit (m/s)	Durchflussrate (m³/h)			
Nennweite (DN)	tem-Innen- durchmes- ser (mm)	(Schedule)	Min.	Max.	Bereichs- überschrei- tung	Min.	Max.	Bereichs- überschrei- tung	
100	102,26	Sch 40	0,61	12,2	14,6	18	360	433	
150	154,05	Sch 40	0,61	12,2	14,6	41	818	982	
200	202,72	Sch 40	0,61	12,2	14,6	71	1.417	1.700	
250	254,51	Sch 40	0,61	12,2	14,6	112	2.233	2.679	
300	303,23	Sch 40	0,61	12,2	14,6	158	3.170	3.803	
400	381,00	Sch 40	0,61	12,2	14,6	250	5.004	6.005	
450	428,65	Sch 40	0,61	12,2	14,6	317	6.334	7.601	
500	477,82	Sch 40	0,61	12,2	14,6	394	7.871	9.445	
600	574,65	Sch 40	0,61	12,2	14,6	569	11.383	13.660	


Tabelle 4: Durchflussbereiche (US-Einheiten)

Messsystem-			Strömungsg	jeschwindigke	it (Fuß/s)	Durchflussrate (BPH)			
Nennweite (Zoll)	tem-Innen- durchmes- ser (Zoll)	(Schedule)	Min.	Max.	Bereichs- überschrei- tung	Min.	Max.	Bereichs- überschrei- tung	
4	4,026	Sch 40	2	40	48	113	2.267	2.721	
6	6,065	Sch 40	2	40	48	257	5.146	6.175	
8	7,981	Sch 40	2	40	48	446	8.910	10.692	
10	10,020	Sch 40	2	40	48	702	14.045	16.853	
12	11,938	Sch 40	2	40	48	997	19.936	23.923	
16	15,000	Sch 40	2	40	48	1.574	31.474	37.769	
18	16,876	Sch 40	2	40	48	1.992	39.839	47.807	
20	18,812	Sch 40	2	40	48	2.475	49.504	59.405	
24	22,624	Sch 40	2	40	48	3.580	71.599	85.919	

Typische Messsystemleistung

Das unten stehende Diagramm zeigt die Messsystemleistung bei zwei Medien mit höherer Viskosität und den Messfehler basierend auf der Reynoldszahl (Re) und der Durchflussrate (m³/h) an.

Abbildung 2: Empfehlungen für die Strömungskonditionierung bei der Messung von Medien mit hoher Viskosität

Lokales LCD-Display

Die Elektronik der Serie 3810 bietet ein optionales lokales LCD-Display mit einer dreizeiligen Anzeige, die den Variablennamen, den Variablenwert und die Maßeinheit angibt. Das lokale Display wird durch die MeterLink[™]-Software oder einen tragbaren Fisher AMS 475 Field Communicator mit HART[®]-Schnittstellenprotokoll unterstützt.

Das lokale Display ermöglicht die Anzeige von bis zu 10 Elementen, die aus 26 Variablen vom Benutzer ausgewählt werden können. Das Display kann so konfiguriert werden, dass die Volumeneinheiten als Ist- oder Tausenderwerte mit einstellbarer Zeitbasis von Sekunden, Stunden oder Tagen skaliert werden. Die Bildlaufrate kann zwischen 1 und 100 Sekunden (standardmäßig 5 Sekunden) eingestellt werden.

Abbildung 3: Lokales LCD-Display

Tabelle 5: Durch den Benutzer wählbare Anzeigevariablen

Variablen	Beschreibung
Volumetric Flow Rate (Volumendurchfluss)	Unkorrigiert (Istwert)
	Korrigiert (Standard oder normal)
Average Flow Velocity (Durchschnittliche Durchflussgeschwindigkeit)	Keine Beschreibung erforderlich.
Average Speed of Sound (Durchschnittliche Schallgeschwindigkeit)	Keine Beschreibung erforderlich.
Pressure (Druck)	Fließend (sofern genutzt)
Temperature (Temperatur)	Fließend (sofern genutzt)
Frequency Output (Frequenzausgang)	1A, 1B, 2A oder 2B
Frequency Output K-factor (Frequenzausgang K-Faktor)	Kanal 1 oder 2
Analog Output (Analogausgang)	1 oder 2
Current Day's Volume Totals (Gesamtvolumina aktueller Tag)	Unkorrigiert oder korrigiert (vorwärts oder rückwärts)
Previous Day's Volume Totals (Gesamtvolumina vorheriger Tag)	Unkorrigiert oder korrigiert (vorwärts oder rückwärts)
Total Volume Totals (Gesamtvolumina gesamt) (ohne Rücksetzung)	Unkorrigiert oder korrigiert (vorwärts oder rückwärts)

Eingang/Ausgang

Tabelle 6: E/A-Anschlüsse des CPU-Moduls (max. Leiterquerschnitt 18 AWG)

	E/A-Anschlussart	Menge	Beschreibung
Serielle Kommunikation	Serieller RS232/RS485-Port	1	■ Modbus RTU/ASCII
			■ Baudrate 115 kbit/s
			■ Vollduplex RS232/RS485
			■ Halbduplex RS485
	Ethernet-Anschluss (TCP/IP) 100BaseT	1	■ Modbus TCP
Digitaleingang ⁽¹⁾	Kontaktschluss	1	■ Status
			■ Einzelpolarität
Analogeingänge ⁽²⁾	4-20 mA	2	■ AI-1 Temperatur ⁽³⁾
			■ AI-2 Druck ⁽³⁾
Frequenz-/Digitalausgänge	TTL/Offener Kollektor	3	■ Durch den Anwender konfigurierbar
Analogausgang ⁽²⁾⁽⁴⁾	4-20 mA	2	Unabhängig konfigurierbarer Analogausgang
			 Kompatibel mit HART® 7, für HART 5 im Werk anfragen

⁽¹⁾ Die Genauigkeit der Analog/Digital-Wandlung liegt bei ±0,05 % des Endwerts über dem Betriebstemperaturbereich.

Tabelle 7: Optionales E/A-Erweiterungsmodul

	E/A-Anschlussart	Menge	Beschreibung
Serielle Kommunikation	Serieller RS232/RS485-Port	1	■ Modbus RTU/ASCII
			Baudrate 115 kbit/s
			Halbduplex RS232/RS485
	Ethernet-Port	1	■ 100BaseT
			■ Drei Ports
Analogausgang	4-20 mA	1	Reserviert für zukünftige Verwendung

⁽²⁾ Eine 24-VDC-Spannungsversorgung ist zur Versorgung der Sensoren mit Spannung erhältlich.

⁽³⁾ AI-1 und AI-2 sind elektronisch isoliert und werden als Stromsenke betrieben. Der Eingang enthält einen Reihenwiderstand für HART®-Kommunikatoren, die für die Sensorkonfiguration angeschlossen werden können.

⁽⁴⁾ Der Nullpunktverschiebungsfehler des Analogausgangs liegt bei ±0,1 % des Endwerts und der Verstärkungsfehler bei ±0,2 % des Endwerts. Die Gesamtausgangsdrift liegt bei ±50 ppm des Endwerts je °C.

Messsystem-Software

MeterLink[™]-Übersicht

Die innovative MeterLink-Software gibt den Anwendern Zugriff auf umfassende Diagnosedaten, die in einem intuitiven Grafikformat präsentiert werden, das die Durchflussmessung vereinfacht.

Dank dieser wichtigen Informationen können Mitarbeiter vorausschauend handeln, statt nur zu reagieren.

- Die MeterLink-Software wird kostenlos mit dem Messsystem geliefert
- MeterLink ist für die Konfiguration von Messumformern erforderlich
- Die MeterLink-Software erfordert RS-232, RS-485 Vollduplex oder Ethernet (empfohlen)
- Unterstützung von Microsoft® Windows Vista, 7, 8.1 und 10 sowie von Microsoft Office 2003 bis 2016

MeterLink-Merkmale

Leistungsstarke Analysefunktionen

- Anzeige, Analyse und Speichern von Wellenformen
 - Alarmprotokolle auf Tages- und Stundenbasis sowie Abruf von Daten aus der Vergangenheit zu Auditierungszwecken als Excel- oder CSV-Dateien
- Grafische Darstellung t\u00e4glicher/st\u00fcndlicher Protokolle
- Alarmanzeige bei erkanntem Rückwärtsdurchfluss
- Aufführen der Primärursache an erster Stelle in Alarmlisten
- Separate Anzeige gesperrter Alarme
- Trenddarstellung von Wartungsprotokollen
- Vergleich von in Excel-Protokolldateien abgespeicherten Messsystemkonfigurationen
- Kalibrierung von Analogeingängen

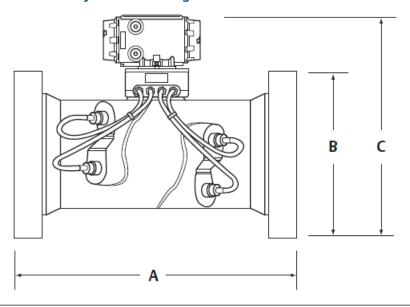
Intuitive Benutzeroberfläche

- Anzeige von Daten zur Messsystemleistung als Zusammenfassung und im Detail
- Integrierte Wartungsprotokolle und Inspektionsberichte
- Unterstützung von Messsystemverzeichnissen
- Gleichzeitige Anzeige mehrerer Graphen
- Automatische Dateibenennung und organsiertes Abspeichern mit Unterstützung von mehreren hundert Messsystemen

Schnelle Inbetriebnahme

- Unkompliziertes Upgrade der Messsystem-Firmware
- Modbus- und HART-Konfiguration
- Assistent für die Einrichtung im Feld
- Einrichtung der lokalen Anzeige

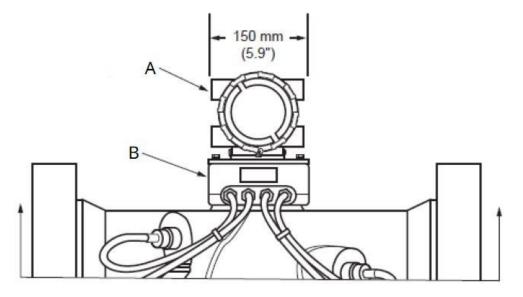
Vielseitige Konnektivitätsmöglichkeiten


- Ethernet
- Serieller Port
- Modem

PlantWeb[™]

■ Die Messsysteme können außerdem mit dem AMS Device Manager oder einem Feldkommunikator 375/475 konfiguriert werden, wenn HART® verwendet wird.

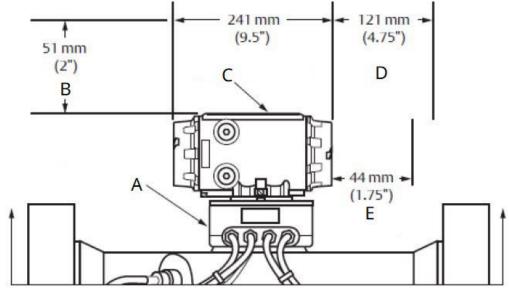
Gewichte und Abmessungen


Abbildung 4: Schlüssel für die Messsystemabmessungen

Anmerkung

Siehe Tabelle 8 und Tabelle 9.

Abbildung 5: Position des Schutzgehäuses im Einbauzustand



- A. Schutzgehäuse
- B. Gehäusebasis

Anmerkung

Abmessungen in Millimetern (Zoll).

Abbildung 6: Optionale Position des Schutzgehäuses

Das Schutzgehäuse kann in 90-Grad-Schritten um 360 Grad gedreht werden.

- A. Gehäusebasis
- B. Zum Entfernen
- C. Schutzgehäuse
- D. Ausbau der Platine
- E. Entfernen der Endkappen

Anmerkung

Abmessungen in Millimetern (Zoll).

Tabellen mit Gewichten und Abmessungen

Die Zeichnung mit den Hauptabmessungen des Messsystems (Abbildung 4) zeigt die Abmessungen der Messsystemkomponenten, die den Buchstaben A, B und C in der nachfolgenden Tabelle entsprechen. Die Gewichte und Abmessungen gelten ausschließlich für die standardmäßige Ausführung aus Kohlenstoffstahl. Im Fall von anderen Werkstoffen Rücksprache mit dem Werk halten. Die zertifizierten Zulassungszeichnungen enthalten die tatsächlichen Gewichte und Abmessungen.

Tabelle 8: Ungefähre Gewichte und Abmessungen (metrischen Einheiten)

Nennwei	ite (DN)	100	150	200	250	300	400	450	500	600
PN 20	Gewicht (kg)	94	137	192	282	368	463	522	567	817
	A (mm)	406,4	457,2	546,1	622,3	660,4	762	800	901,7	990,6
	B (mm)	228,6	279,4	342,9	406,4	482,6	596,9	635	698,5	812,8
	C (mm)	449,6	505,5	563,9	627,4	688,3	789,9	846	891,5	1005,8
PN 50	Gewicht (kg)	103	152	218,6	320,2	415,5	567	628	1084	1669
	A (mm)	406,4	457,2	546,1	622,3	660,4	762	800	902	991
	B (mm)	254	317,5	381	444,5	520,7	648	711	775	914
	C (mm)	462,3	525,8	581,7	645,2	708,7	813	869	930	1057
PN 100	Gewicht (kg)	112	177,8	250,8	385,6	465,8	631	678	1189	1801
	A (mm)	406,4	457,2	546,1	622,3	660,4	762	800	902	991
	B (mm)	273,1	355,6	419,1	508	558,8	685,8	743	813	940
	C (mm)	472,4	543,6	602	678,2	726,4	833,1	884	930	1212
PN 150	Gewicht (kg)	122,9	202,8	372	459	815	1202	1420	1667	3261
	A (mm)	419,1	470	698,5	774,7	876,3	1054	914	940	1499
	B (mm)	292,1	381	469,9	546,1	609,6	705	787	857	1041
	C (mm)	480,1	556,3	640,1	703,6	645,2	866	922	1001	1151

Tabelle 9: Ungefähre Gewichte und Abmessungen (US-Einheiten)

Nennweit	e (Zoll)	4 Zoll	6 Zoll	8 Zoll	10 Zoll	12 Zoll	16 Zoll	18 Zoll	20 Zoll	24 Zoll
150 ANSI	Gewicht (lb.)	207	301	424	622	811	1020	1150	1250	1800
	A (Zoll)	16,0	18,0	21,5	24,5	26,0	30,0	31,5	35,5	39
	B (Zoll)	9,0	11,0	13,5	16,0	19,0	23,5	25	27,5	32
	C (Zoll)	17,7	19,9	22,2	24,7	27,1	31,1	33,3	35,1	39,6
300 ANSI	Gewicht (lb.)	227	335	482	706	916	1250	1385	2390	3680
	A (Zoll)	16,0	18,0	21,5	24,5	26,0	30,0	31,5	35,5	39
	B (Zoll)	10,0	12,5	15,0	17,5	20,5	25,5	28	30,5	36
	C (Zoll)	18,2	20,7	22,9	25,4	27,9	32	34,2	36,6	41,6
600 ANSI	Gewicht (lb.)	247	392	553	850	1027	1391	1495	2622	3970
	A (Zoll)	16,0	18,0	21,5	24,5	26,0	30,0	31,5	35,5	39
	B (Zoll)	10,8	14,0	16,5	20,0	22,0	27,0	29,25	32,0	37
	C (Zoll)	18,6	21,4	23,7	26,7	28,6	32,8	34,8	37,3	47,7
900 ANSI	Gewicht (lb.)	271	447	820	1012	1797	2650	3130	3675	7190
	A (Zoll)	16,5	18,5	27,5	30,5	34,5	41,5	36	37	59
	B (Zoll)	11,5	15,0	18,5	21,5	24	27,75	31	33,75	41
	C (Zoll)	18,9	21,9	25,2	27,7	25,4	34,1	36,3	39,4	45,3

Anmerkung

CF: Für Nennweiten über DN600 (24 Zoll) Rücksprache mit dem Werk halten.

Sicherheit und Compliance

Das Rosemount 3814 Ultraschall-Durchflussmesssystem entspricht den weltweiten Industrienormen für elektrische und eigensichere Zertifizierungen und Zulassungen. Eine vollständige Liste aller Behörden und Zertifizierungen erhalten Sie auf Anfrage von einem Emerson-Spezialisten für Ultraschallprodukte.

Sicherheitsklassifizierungen

Underwriters Laboratories (UL/cUL)

Ex-Bereiche – Class I, Division 1, Groups C und D

CE-Kennzeichnung gemäß Richtlinien

- Explosionsgefährdete Atmosphären (ATEX)
- Zertifikat Demko II ATEX 1006133X
- Kennzeichnung \bigotimes II 2G Ex d ia IIB T4 Gb (-40 °C ≤ T ≤ +60 °C)
- Druckgeräterichtlinie
- Elektromagnetische Verträglichkeit (EMV)

INMETRO

- Zertifikat UL-BR 16.0144X
- Kennzeichnung Ex d [ia] IIB T4 Gb IP66W

International Electrotechnical Commission (IECEx)

■ Kennzeichnung — Ex d ia IIB T4

Schutzarten durch Gehäuse

Aluminium

- NEMA 4
- IP66 nach EN 60529

Edelstahl

- NEMA 4X
- IP66 nach EN 60529

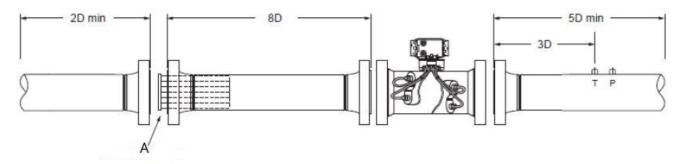
Messtechnische Zulassungen

Europäische Union (TC 8224)

- WELMEC Guide 8.8 unter Messgeräterichtlinie
- OIML R117-1 Edition 2007 (E)
- Messgeräterichtlinienklasse 0,3

Abbildung 7: Aluminiumschutzgehäuse für die Elektronik der Serie 3810 mit optionalem Display

Empfohlene Installation


Empfohlene Ein- und Auslaufstrecken

Die nachfolgenden Zeichnungen zeigen die Längenempfehlungen für Ein- und Auslaufstrecken bei der Installation von Rosemount 3814 Ultraschall-Durchflussmesssystemen für Flüssigkeiten. Bitte nehmen Sie Kontakt mit einem Emerson-Spezialisten für Ultraschallprodukte auf, um Installationsempfehlungen in Bezug auf Ihre spezifische Anwendung zu erhalten (z. B. bei Messungen mit niedriger Reynoldszahl). Andere Längen oder Strömungsgleichrichter sind möglich.

Abbildung 8: Empfohlene Ein- und Auslaufstrecken für Ultraschall-Messsysteme für Flüssigkeiten (ohne Strömungsgleichrichter)

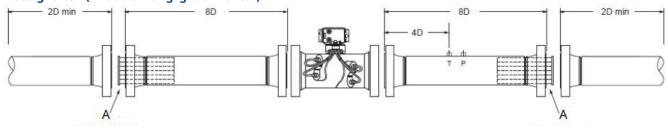


Abbildung 9: Empfohlene Ein- und Auslaufstrecken für Ultraschall-Messsysteme für Flüssigkeiten (mit Strömungsgleichrichter)

A. Strömungsgleichrichter

Abbildung 10: Empfohlene Ein- und Auslaufstrecken für bidirektionale Ultraschall-Messsysteme für Flüssigkeiten (mit Strömungsgleichrichter)

A. Strömungsgleichrichter

Anmerkung

- A. Um bestmögliche Ergebnisse zu erzielen, empfiehlt Emerson die Verwendung von Strömungsgleichrichtern.
- B. D = Nennweite in Zoll (d. h. Nennweite 6 Zoll; 10D = 60 Zoll)
- C. P = Druckmesspunkt
- D. T = Temperaturmesspunkt
- E. Der Einsatz von Rohrleitungsbündeln wird empfohlen; leistungsstarke Strömungsgleichrichter (d. h. Rosemount Profiler) sind akzeptabel.

Bestellinformationen

Online-Produktkonfigurator

Viele Produkte sind mit unserem Produktkonfigurator online konfigurierbar. Klicken Sie auf die Schaltfläche **Configure (Konfigurieren)** oder besuchen Sie Emerson.com/MeasurementInstrumentation, um mit der Konfiguration zu beginnen. Mit der integrierten Logik und der kontinuierlichen Validierung dieses Tools können Sie Ihre Produkte schneller und genauer konfigurieren.

Spezifikationen und Optionen

Siehe den Abschnitt "Spezifikationen und Optionen" für weitere detaillierte Informationen zu den einzelnen Konfigurationen. Spezifikation und Auswahl von Produktwerkstoffen, Optionen oder Komponenten müssen vom Besteller des Geräts vorgenommen werden. Siehe den Abschnitt "Werkstoffauswahl" für weitere Informationen.

Modellcodes

Modellcodes enthalten Detailinformationen zu den einzelnen Produkten. Die genauen Modellcodes variieren; ein Beispiel für einen typischen Modellcode wird in Beispiel für einen Modellcode gezeigt.

Beispiel für einen Modellcode

3814060803S01M0805111ACAA1111A

Erforderliche Modellkomponenten

Gerät

Code	Beschreibung
3814	3814 mit 4 Messpfaden

Nennweite

Code	Beschreibung
04	DN100 (4 Zoll)
06	DN150 (6 Zoll)
08	DN200 (8 Zoll)
10	DN250 (10 Zoll)
12	DN300 (12 Zoll)
16	DN400 (16 Zoll)
18	DN450 (18 Zoll)
20	DN500 (20 Zoll)
24	DN600 (24 Zoll)

Druckstufe

Code	Beschreibung
01	PN 20 / 150 ANSI
03	PN 50 / 300 ANSI
05	PN 100 / 600 ANSI
06	PN 150 / 900 ANSI

Flanschtyp

Code	Beschreibung
S01	RF / RF
S02	RTJ / RTJ
S04	Kompaktflansch (NORSOK)

Gehäuse- und Flanschwerkstoff

Code	Beschreibung
M ⁽¹⁾	Gegossener Kohlenstoffstahl (LCC) / Edelstahl 316 / Edelstahl 316L / Duplex-Edelstahl
F ⁽¹⁾	Geschmiedeter Kohlenstoffstahl / Edelstahl 316 / Duplex-Edelstahl

⁽¹⁾ Im Werk die Codierung für spezifische Werkstoffe erfragen.

Schedule (Leitungsbohrung)

Code	Beschreibung
LW0	Schedule LW
020	Schedule 20
030	Schedule 30
040	Schedule 40
060	Schedule 60
080	Schedule 80
100	Schedule 100
120	Schedule 120
140	Schedule 140
160	Schedule 160
STD	Schedule STD
XS0	Schedule XS
XXS	Extra, Extra Strong / Verwendung ausschließlich in Nennweiten DN150 und DN200 (6 Zoll und 8 Zoll)

Messwandler-Baugruppe

Code	Beschreibung
ל	LT-08 (-58 °F bis 275 °F [-50 °C bis +135 °C]) mit O-Ringen aus NBR DN100 bis DN250 (4 Zoll bis 10 Zoll [101 mm bis 254 mm])

Code	Beschreibung
6	LT-09 (-58 °F bis 275 °F [-50 °C bis +135 °C]) mit O-Ringen aus NBR DN300 bis DN600 (12 Zoll bis 24 Zoll [304,8 mm bis 609 mm])
7	LT-08 (-40 °F bis 302 °F [-40 °C bis +150 °C]) mit O-Ringen aus FKM
8	LT-09 (-40 °F bis 302 °F [-40 °C bis +150 °C]) mit O-Ringen aus FKM
А	LT-04 (-58 °F bis 275 °F [-50 °C bis +135 °C]) mit O-Ringen aus NBR DN100 bis DN250 (4 Zoll bis 10 Zoll [101 mm bis 254 mm])
В	LT-05 (-58 °F bis 275 °F [-50 °C bis +135 °C]) mit O-Ringen aus NBR DN300 bis DN600 (12 Zoll bis 24 Zoll [304,8 mm bis 609 mm])
С	LT-04 (-40 °F bis 302 °F [-40 °C bis +150 °C]) mit O-Ringen aus FKM
D	LT-05 (-40 °F bis 302 °F [-40 °C bis +150 °C]) mit O-Ringen aus FKM

Gehäuseschutzart/Eingangsspannung

Code	Beschreibung
1	Aluminium; 10,4 bis 36 VDC
2	Edelstahl; 10,4 bis 36 VDC

Zukünftig

Code	Beschreibung
1	-

Typ des Kabelschutzrohrs

Code	Beschreibung
1	_{3/4} Zoll NPT
2	M20 Reduzierausführung

Montage der Elektronik

Code	Beschreibung
А	Integrierte Montage (bis +140 °F [+60 °C])
В	Abgesetzte Montage mit 15 Fuß (4,5 m) langen Messwandlerkabeln (bis +212 °F [+100 °C])
С	Abgesetzte Montage, 15 Fuß (4,5 m) (bis +302 °F [+150 °C])
E	Integrierte Montage (bis +140 °F [+60 °C]) mit armierten, abgedeckten Kabeln

CPU/Display

Code	Beschreibung
С	Komplette E/A, kein Display
D	Komplette E/A, mit Display

Erweiterungsmodul

Code	Beschreibung
А	-
В	Serielle Schnittstelle RS-232
С	Serielle Schnittstelle RS-485 (2-Leiter)
G	E/A-Erweiterungsmodul

Wireless

Code	Beschreibung
А	-
В	тним

Kennzeichnungsformat

(Nennweite / Druckstufe / Durchflussparameter)

Code	Beschreibung
1	Zoll / ANSI / US-Einheiten
2	Zoll / ANSI / metrisch
3	DN / PN / US-Einheiten
4	DN / PN / metrisch

Kennzeichnungssprache (für alle Kennzeichnungen)

Code	Beschreibung
1	Englisch
2	Französisch
3	Russisch
4	Chinesisch

Zertifizierung nach Druckgeräterichtlinie

Code	Beschreibung
1	-
2	Druckgeräterichtlinie (Auswahl von elektrischer Zulassung 2 erforderlich)
3	CRN (Canadian Boiler Branch)

Elektrische Zulassungen

Code	Beschreibung
1	Zulassung nach UL / c-UL
2	ATEX / IECEx

Anmerkung

Auswahl von Zertifizierungscode 2 gemäß Druckgeräterichtlinie erforderlich.

Messtechnische Zulassungen

Code	Beschreibung
А	-
В	Europäische Union (TC 8224), OIML

Anmerkung

Diese Übersicht dient lediglich zu Informationszwecken. Nicht jede Option ist aufgeführt und einige Optionen sind von anderen abhängig. Wenden Sie sich bitte an das Werk, um Hilfe bzgl. der Auslegung Ihres optimalen Messsystems zu erhalten.

Weiterführende Informationen: Emerson.com

 $^{\circ}$ 2024 Emerson. Alle Rechte vorbehalten.

Die Verkaufsbedingungen von Emerson sind auf Anfrage erhältlich. Das Emerson Logo ist eine Marke und Dienstleistungsmarke der Emerson Electric Co. Rosemount ist eine Marke der Emerson Unternehmensgruppe. Alle anderen Marken sind Eigentum ihres jeweiligen Inhabers.

