
Rosemount[™] **SeniorSonic**[™] **3414**

Ultraschall-Durchflussmesssystem für Gase mit vier Messpfaden

Intelligenz für den eichpflichtigen Verkehr

Das für den eichpflichtigen Verkehr konzipierte SeniorSonic 3414 Ultraschall-Durchflussmesssystem für Gase mit vier Messpfaden zeichnet sich durch eine hohe Genauigkeit und langfristig zuverlässige Leistung aus, dank derer Gasverluste und nicht erfasste Gasmengen minimiert werden. Das fortschrittliche Messsystem ist in Nennweiten von DN100 bis DN1050 (4 Zoll bis 42 Zoll) erhältlich.⁽¹⁾ Es ist für bidirektionalen Durchfluss ausgelegt, bietet eine erhöhte Durchflusskapazität und zeigt keinen inkrementellen Druckverlust, was wiederum zu einer Reduzierung von Messrisiken und einer Minimierung der Betriebskosten führt.

Die leistungsstarke Elektronik der Serie 3410 der nächsten Generation sorgt in Kombination mit dem SeniorSonic 3414 Messsystem für einen deutlichen Anstieg der Abtastrate und die Erfassung großer Datenvolumen einschließlich umfassender Stunden- und Tagesprotokolle. Die moderne Elektronik enthält ein direkt einsetzbares, integriertes CPU- und E/A-Steckmodul sowie eine lokale LCD-Anzeige (optional), um die Zuverlässigkeit zu erhöhen, die Wartung zu vereinfachen und zukünftige Erweiterungen zu ermöglichen. Anwender können die Messsysteme problemlos in Echtzeit von einem PC oder Laptop-Computer aus überwachen und eventuelle Fehler beheben. Die MeterLink™ Diagnosesoftware verfügt über eine intuitive Benutzeroberfläche, über die wichtige Informationen, einschließlich Durchflussanalysen auf Expertenniveau, Alarmmeldungen bei Durchflussproblemen und Vorschläge für Korrekturmaßnahmen, angezeigt werden, um die Zuverlässigkeit und Funktionalität zu verbessern.

Darüber hinaus verfügt das SeniorSonic 3414 Messsystem über robuste T-200-Messwandler aus Titan ohne Mediumberührung. Diese Messwandler gewährleisten zuverlässige Messungen auch unter schwierigen Umgebungsbedingungen und im Zusammenhang mit feuchten, schweren und/oder verunreinigten Gasen. Die Messwandler sind spezifisch für eine vereinfachte Wartung und maximale Verfügbarkeit ausgelegt.

Typische Anwendung

Eichpflichtiger Verkehr in Erdgas-Transportleitungen

Inhalt

Intelligenz für den eichpflichtigen Verkehr	2
Typische Anwendung	
Standardspezifikationen	
Werkstoffe	
Auslegung der Durchflussmesssysteme	
Titangekapselte T-200-Messwandler	
Lokales LCD-Display	15
Eingang/Ausgang	16
Diagnose und Software	
Sicherheit und Compliance	20
Betriebsgrenzen	
Gewichte und Abmessungen	24
Konfigurationscode	

⁽¹⁾ Bei Messsystem-Nennweiten über DN900 (36 Zoll) Kontakt mit dem Werk aufnehmen.

Abbildung 1: SeniorSonic 3414 Ultraschall-Durchflussmesssystem für Gase

Anwendungsorte

- Kraftwerke (Eingangsseite)
- Anlagen für die Gasverarbeitung (Eingangs- und Ausgangsseite)
- Unterirdische Lager (Eingangs- und Ausgangsseite)
- Gasförderung (Onshore/Offshore)
- City-Gate-Stationen (Annahme-/Abgabestellen)

Merkmale und Vorteile

- Vier Messpfade mit Direktpfadtechnologie sorgen für Genauigkeit, Stabilität, Redundanz und eine Senkung der Betriebskosten
- Hervorragende Langzeitleistung und somit weniger Wartungskosten
- Hohes Messspannenverhältnis von über 100:1 für weniger Messläufe, kleinere Nennweiten und geringere Kapitalkosten
- Ausführung in Guss- oder Schmiedebauweise zur Minimierung von Messunsicherheiten aufgrund von Druckveränderungen
- Robuste titangekapselte T-200-Messwandler für optimale Leistung in feuchten, sauren und korrosiven Umgebungen (Standard für Nennweiten bis DN900 bzw. 36 Zoll und optional für DN1050 bzw. 42 Zoll)
- T-200-Messwandler können ohne Spezialwerkzeuge auch unter Druck entnommen werden und das Design ohne Mediumberührung verhindert die Freisetzung von Treibhausgasen
- Die Elektronik der Serie 3410 garantiert eine schnelle Abtastung, eine erweiterbare Elektronikplattform und eine Datenprotokollierung mit Informationen zu Druck, Temperatur und Gaszusammensetzung, so dass das Messsystem Durchflussraten unter Standardbedingungen wie ein redundanter Flow-Computer berechnen kann
- Elektronik der Serie 3410 für die Berechnung des korrigierten Volumen-, Masse- und Energiedurchflusses
- Elektronik der Serie 3410 für die Schallgeschwindigkeitsberechnung auf Grundlage von Druck, Temperatur und Gaszusammensetzung mithilfe von AGA 10 2003 und GERG-2008 (AGA 8 Teil 2, 2017)
- Lokale LCD-Anzeige (optional) mit bis zu zehn benutzerwählbare Scroll-Variablen
- Das Rosemount Ultraschall-Messsystem 3414 für Gase ist nun auch mit Smart Meter Verification verfügbar.
 Die Anwender erhalten so eine erstklassige Durchflussanalyse und ein vereinfachtes, intuitiv zu erfassendes

Gesamtergebnis im Hinblick auf den Messstatus, was zu einer Minimierung der Zeit für die Datenanalyse führt. Auf dieses neue Merkmal kann mittels Modbus oder über die MeterLink-Diagnosesoftware zugegriffen werden.

- Vorausschauende Diagnosefunktionen, mit denen die Mitarbeiter von der Norm abweichende Situationen schnell erkennen und entsprechend darauf reagieren können, um Prozessstörungen und ungeplante Abschaltungen zu vermeiden
- Das SeniorSonic 3414 Messsystem ist Teil des umfassenden Emerson-Portfolios an intelligenten Feldgeräten für den Einsatz in einer PlantWeb[®]-Architektur für digitale Anlagen

Standardspezifikationen

Wenn Ihre Anforderungen außerhalb der aufgeführten Spezifikationen liegen, wenden Sie sich bitte an einen Emerson-Spezialisten für Ultraschallprodukte. Je nach Anwendung sind möglicherweise andere Produkte und Werkstoffe erhältlich.

Messsystemspezifikationen

Eigenschaften

Vier Messpfade (acht Messwandler) mit Direktpfadtechnologie

Leistungsmerkmale

- Die durchflusskalibrierte Genauigkeit beträgt ±0,1 % des Messwerts über den gesamten Durchflusskalibrierbereich
- Die Reproduzierbarkeit beträgt ±0,05 % des Messwerts für 1,5 bis 30,5 m/s (5 bis 100 Fuß/s)

Strömungsgeschwindigkeit

- Nennwert 0,5 bis 30 m/s (1,7 bis 100 Fuß/s) mit einer bereichsüberschreitenden Leistung über 38 m/s (125 Fuß/s) bei einigen Nennweiten
- Das Messsystem erfüllt oder übertrifft die Leistungsdaten gemäß AGA 9 2017 3. Ausgabe/ISO 17089

Tabelle 1: Nenndurchfluss gemäß AGA 9/ISO 17089 (US-Einheiten)

Messsystem-Nennweite (Zoll)	4 bis 24	30	36
q _{min.} (Fuß/s)	1,7	1,7	1,7
q _t (Fuß/s)	10	8,5	7,5
q _{max.} (Fuß/s)	100	85	75

Tabelle 2: Nenndurchfluss gemäß AGA 9/ISO 17089 (metrische Einheiten)

Messsystem-Nennweite (DN)	100 bis 600	750	900
q _{min.} (m/s)	0,5	0,5	0,5
q _t (m/s)	3,048	2,591	2,29
q _{max.} (m/s)	30,48	25,91	22,86

Elektronikdaten

Spannungsversorgung

■ 10,4 VDC bis 36 VDC

8 W typisch, 15 W max.

Mechanische Daten

Nennweiten

- DN100 bis DN1050 (4 Zoll bis 42 Zoll)⁽²⁾
- DN100 bis DN150 (4 Zoll bis 6 Zoll) mit 45° Doppel-X-Ausrichtung
- DN200 (8 Zoll) und größer mit Ausrichtung nach British Gas (BG)

Betriebsgastemperatur (Messwandler)

- T-200⁽³⁾: -50 °C bis 125 °C (-58 °F bis +257 °F)
- T-21: -20 °C bis +100 °C (-4 °F bis +212 °F)
- T-41: -50 °C bis +100 °C (-58 °F bis +212 °F)
- T-22: -50 °C bis +100 °C (-58 °F bis +212 °F)

Betriebsdruckbereich (Messwandler)

- T-200⁽³⁾: 1,03 bar bis 258,55 bar (15 psig bis 3.750 psig)
- T-21/T-41/T-22: 6,89 bar bis 275,79 bar (100 psig bis 4.000 psig)
- T-21/T-41/T-22: 3,44 bar (50 psig) verfügbar mit reduziertem Qmax⁽⁴⁾
- T-22: 3,44 bar bis 2,58 bar (0 psig bis 3.750 psig)⁽⁵⁾

Flansche

- Dichtleiste (Raised Face, RF) und Dichtringverbindung (Ring Type Joint, RTJ) für ANSI Classes 300 bis 2.500 (PN 50 bis 420)
- Kompakte Flansch- und Nabenanschlüsse (optional)

Konformität mit NACE, NORSOK und Druckgeräterichtlinie (PED)

- Konzipiert für NACE-Konformität⁽⁶⁾
- NORSOK auf Anfrage erhältlich
- Druckgeräterichtlinie (PED) auf Anfrage erhältlich

Angaben zur Elektronik

Betriebstemperatur

■ -40 °C bis +60 °C (-40 °F bis +140 °F)

Relative Luftfeuchtigkeit im Betrieb

Bis zu 95 %, nicht kondensierend

⁽²⁾ Bei Messsystem-Nennweiten über DN900 (36 Zoll) Kontakt mit dem Werk aufnehmen.

⁽³⁾ Verfügbar für Nennweiten bis 42 Zoll. Mindestbetriebsdruck schwankend je nach Nennweite: Für Mindestdrücke unter 100 psig bitte Rücksprache mit dem Hersteller halten.

⁽⁴⁾ Siehe Seite 9 bzgl. weiterer Informationen zu Betriebsgrenzen.

⁽⁵⁾ Für die Verwendung von T-22 im Rahmen von Niederdruckanwendungen unter 6,89 bar (100 psig) muss das Messsystem mit isolierten Messwandler-Befestigungen ausgestattet sein.

⁽⁶⁾ Es liegt in der Verantwortung des Anwenders, die geeigneten Werkstoffe für die beabsichtigten Einsatzbereiche auszuwählen.

Lagertemperatur

■ -40 °C bis +85 °C (-40 °F bis +185 °F) mit einer Lagertemperaturuntergrenze von -20 °C (-4 °F) für T-21 Messwandler und -50 °C (-58 °F) für T-41/T-22 Messwandler

Elektronikgehäuseoptionen

- Integrierte Montage (Standard)
- Abgesetzte Montage (optional) mit einem Kabel mit einer Länge von 4,6 m (15 Fuß)
 - Erforderlich für eine Prozesstemperatur über +60 °C (+140 °F)

Werkstoffe

Die Werkstoffe richten sich nach den jeweiligen Anwendungsanforderungen, die durch den Kunden festgelegt werden müssen. Bei Bedarf kann ein Vertreter von Emerson Hilfestellung bei der Auswahl der Werkstoffe geben.

Werkstoffe

Gehäuse und Flansch

Gussgehäuse

- ASTM A352 Gr LCC Kohlenstoffstahl⁽⁷⁾
 -46 °C bis +150 °C (-50 °F bis +302 °F)
- ASTM A351 Gr CF8M 316 Edelstahl
 -46 °C bis +150 °C (-50 °F bis +302 °F)
- ASTM A351 Gr CF8M Edelstahl 316L
 -46 °C bis +150 °C (-50 °F bis +302 °F)
- ASTM A995 Gr 4A Duplex-Edelstahl⁽⁸⁾
 -50 °C bis +150 °C (-58 °F bis +302 °F)

Schmiedeteile

- ASTM A350 Gr LF2 Kohlenstoffstahl⁽⁷⁾
 -46 °C bis +150 °C (-50 °F bis +302 °F)
- ASTM A182 Gr F316 Edelstahl
 -46 °C bis +150 °C (-50 °F bis +302 °F)
- ASTM A182 Gr F316L Edelstahl
 -46 °C bis +150 °C (-50 °F bis +302 °F)
- ASTM A182 Gr F51 Duplex-Edelstahl⁽⁸⁾
 -50 °C bis +150 °C (-58 °F bis +302 °F)
- ASTM A105 Kohlenstoffstahl
 -29 °C bis +150 °C (-20 °F bis +302 °F)

Schutzgehäuse

- Standard: Aluminium ASTM B26 Gr A356.0 T6
- Optional: Edelstahl ASTM A351 Gr CF8M
- Optional: (Nachrüstung): ASTM B26-92A Aluminium

Messwandler-Komponenten

O-Ringe für Messwandler-Befestigungselemente und -Halterungen

- Standard: Nitril-Butadien-Gummi (NBR)
- Andere Werkstoffe auf Anfrage erhältlich

Messwandler-Befestigungen und -Halterungen

Befestigungen aus Edelstahl ASTM A564 Typ 630

⁽⁷⁾ Stoßprüfung gemäß ASTM-Norm.

⁽⁸⁾ Werkstoff A995 4A noch nicht in Kanada zugelassen.

- Befestigungen aus Edelstahl ASTM A479 316L
- Befestigung aus INCONEL[®] ASTM B446 (UNS N06625) Gr 1 (optional)
- Halterung aus INCONEL ASTM B446 (UNS N06625) Gr 1 (optional)

Lack-Spezifikationen

Außenflächen von Gehäuse und Flansch

Gehäusewerkstoff: Kohlenstoffstahl

Zweischichtlackierung; anorganische Zinkgrundierung und Acryl-Decklack (Standard)

Gehäusewerkstoff: Edelstahl oder Duplex

Lackierung (optional)

Schutzgehäuse

Werkstoff: Aluminium

- Standard: 100 % konversionsbeschichtet und Außenbeschichtung mit Polyurethanlack
- Optional (Nachrüstung): 100 % konversionsbeschichtet und Außenbeschichtung mit Polyurethanlack

Werkstoff: Edelstahl

■ Optional: passiviert

Tabelle 3: Maximaldruck von Gehäuse und Flansch nach Werkstoff [in psi für Messsystem-Nennweiten von 4 Zoll bis 42 Zoll]⁽¹⁾

ANSI Class	Kohlenstoffstahl gegossen	Kohlenstoffstahl geschmiedet	Gegossen: Edelstahl 316, Edelstahl 316L Geschmiedet: Edelstahl 316	Geschmiedet: Edel- stahl 316L	Duplex-Edelstahl
300	750	740	720	600	750
600	1.500	1.480	1.440	1.200	1.500
900	2.250	2.220	2.160	1.800	2.250
1.500	3.750	3.705	3.600	3.000	3.750
2.500	6.250	6.170	6.000	5.000	6.250

⁽¹⁾ Die Angaben zur Druckstufe gelten für -29 °C bis +38 °C (-20 °F bis +100 °F). Bei anderen Temperaturen können die Werkstoffe andere maximale Druckwerte aufweisen.

Tabelle 4: Maximaldruck von Gehäuse und Flansch nach Werkstoff [in bar für Messsystem-Nennweiten von DN100 bis DN1050]⁽¹⁾

DN	Kohlenstoffstahl gegossen	Kohlenstoffstahl geschmiedet	Gegossen: Edelstahl 316, Edelstahl 316L Geschmiedet: Edelstahl 316	Geschmiedet: Edel- stahl 316L	Duplex-Edelstahl
50	51,7	51,1	49,6	41,4	51,7
100	103,4	102,1	99,3	82,7	103,4
150	155,1	153,2	148,9	124,1	155,1
200	258,6	255,3	248,2	206,8	258,6
250	430,9	425,5	413,7	344,7	430,9

⁽¹⁾ Die Angaben zur Druckstufe gelten für -29 °C bis +38 °C (-20 °F bis +100 °F). Bei anderen Temperaturen können die Werkstoffe andere maximale Druckwerte aufweisen.

Auslegung der Durchflussmesssysteme

US-Einheiten

Tabelle 5 und Tabelle 6 können zur Bestimmung des Durchflussbereichs bei Referenzbedingungen für alle Messsystem-Nennweiten verwendet werden. Alle Berechnungen basieren auf einer Bohrungsgröße von Schedule 40, +60 °F und einer typischen Gaszusammensetzung (AGA 8 Amarillo). Diese Werte sollen bei der Nennweitenbestimmung helfen.

Berechnen der Kapazität des Messsystems

Zuerst die Kapazität (Durchflussrate) aus Tabelle 4A für die Nennweite und den Betriebsdruck des Messsystems heraussuchen, um einen Volumendurchfluss bei einer bestimmten Strömungsgeschwindigkeit zu berechnen. Dann die Kapazität mit der gewünschten Strömungsgeschwindigkeit dividiert durch 100 Fuß/s multiplizieren, um den gewünschten Volumendurchfluss zu ermitteln.

Beispiel: Bestimmung des Durchfluss pro Stunde bei 70 Fuß/s für eine Nennweite von 8 Zoll und einen Betriebsdruck von 800 psig.

 $Durchfluss = 7.842 \text{ MSCFH} \qquad \text{Str\"{o}mungsgeschwindigkeit} = 70 \text{ Fu}\text{\&s}/\text{s} \qquad \text{Ergebnis} = \frac{7.842 \text{ MSCFH} \times 70 \text{ Fu}\text{\&s}/\text{s}}{100 \text{ Fu}\text{\&s}/\text{s}} = 5.489,4 \text{ MSCFH}$

Tabelle 5: Durchflussraten (MSCFH) basierend auf max. Nenngeschwindigkeit [4 Zoll bis 24 Zoll = 100 Fuß/s] [30 Zoll = 85 Fuß/s] [36 Zoll = 75 Fuß/s]

Messsyste Nennweit		4	6	8	10	12	16	18	20	24	30	36
Betriebs-	100	252	571	989	1.559	2.213	3.494	4.423	5.495	7.948	10.910	13.862
druck (psig)	200	478	1.086	1.880	2.963	4.207	6.641	8.406	10.446	15.108	20.738	26.349
	300	712	1.616	2.799	4.412	6.263	9.888	12.515	15.552	22.493	30.875	39.229
	400	954	2.164	3.747	5.906	8.384	13.236	16.754	20.819	30.111	41.331	52.515
	500	1.202	2.729	4.725	7.448	10.572	16.690	21.126	26.251	37.968	52.117	66.219
	600	1.459	3.311	5.733	9.037	12.828	20.252	25.635	31.854	46.071	63.239	80.350
	700	1.723	3.911	6.772	10.675	15.153	23.923	30.281	37.627	54.422	74.701	94.914
	800	1.996	4.529	7.842	12.362	17.547	27.703	35.065	43.572	63.020	86.504	109.910
	900	2.276	5.165	8.943	14.096	20.009	31.590	39.986	49.686	71.863	98.642	125.333
	1.000	2.563	5.817	10.073	15.877	22.537	35.581	45.038	55.964	80.943	111.105	141.169
	1.100	2.858	6.486	11.231	17.702	25.128	39.671	50.214	62.393	90.246	123.875	157.394
	1.200	3.159	7.169	12.414	19.567	27.774	43.850	55.504	68.969	99.752	136.923	173.973
	1.300	3.466	7.865	13.619	21.467	30.471	48.107	60.893	75.665	109.437	150.217	190.865
	1.400	3.777	8.571	14.842	23.395	33.208	52.428	66.362	82.462	119.267	163.711	208.009
	1.500	4.092	9.285	16.079	25.344	35.975	56.797	71.892	89.333	129.205	177.352	225.341
	1.600	4.408	10.004	17.323	27.306	38.760	61.193	77.456	96.247	139.205	191.079	242.782
	1.700	4.725	10.724	18.570	29.270	41.548	65.595	83.029	103.172	149.221	204.826	260.250
	1.800	5.041	11.441	19.811	31.227	44.326	69.981	88.580	110.069	159.197	218.520	277.649
	1.900	5.354	12.151	21.041	33.166	47.079	74.327	94.081	116.905	169.083	232.090	294.891
	2.000	5.663	12.852	22.255	35.079	49.793	78.612	99.505	123.645	178.832	245.472	311.894

Tabelle 6: Durchflussraten (MMSCFD) basierend auf max. Nenngeschwindigkeit [4 Zoll bis 24 Zoll = 100 Fuß/s] [30 Zoll = 85 Fuß/s] [36 Zoll = 75 Fuß/s]

Messsyste weite (Zoll		4	6	8	10	12	16	18	20	24	30	36
Betriebs-	100	6,0	13,7	23,7	37,4	53,1	83,9	106,1	131,9	190,8	261,8	332,7
druck (psig)	200	11,5	26,1	45,1	71,1	101,0	159,4	201,8	250,7	362,6	497,7	632,4
"	300	17,1	38,8	67,2	105,9	150,3	237,3	300,4	373,2	539,8	741,0	941,5
	400	22,9	51,9	89,9	141,8	201,2	317,7	402,1	499,6	722,7	991,9	1.260,4
	500	28,9	65,5	113,4	178,7	253,7	400,6	507,0	630,0	911,2	1.250,8	1.589,3
	600	35,0	79,5	137,6	216,9	307,9	486,1	615,2	764,5	1.105,7	1.517,7	1.928,4
	700	41,4	93,9	162,5	256,2	363,7	574,2	726,7	903,1	1.306,1	1.792,8	2.277,9
	800	47,9	108,7	188,2	296,7	421,1	664,9	841,6	1.045,7	1.512,5	2.076,1	2.637,8
	900	54,6	123,9	214,6	338,3	480,2	758,2	959,7	1.192,5	1.724,7	2.367,4	3.008,0
	1.000	61,5	139,6	241,7	381,1	540,9	854,0	1.080,9	1.343,1	1.942,6	2.666,5	3.388,1
	1.100	68,6	155,7	269,5	424,8	603,1	952,1	1.205,1	1.497,5	2.165,9	2.973,0	3.777,5
	1.200	75,8	172,1	297,9	469,6	666,6	1.052,4	1.332,1	1.655,3	2.394,0	3.286,2	4.175,4
	1.300	83,2	188,8	326,9	515,2	731,3	1.154,6	1.461,4	1.816,0	2.626,5	3.605,2	4.580,7
	1.400	90,6	205,7	356,2	561,5	797,0	1.258,3	1.592,7	1.979,1	2.862,4	3.929,1	4.992,2
	1.500	98,2	222,9	385,9	608,3	863,4	1.363,1	1.725,4	2.144,0	3.100,9	4.256,4	5.408,2
	1.600	105,8	240,1	415,8	655,3	930,2	1.468,6	1.858,9	2.309,9	3.340,9	4.585,9	5.826,8
	1.700	113,4	257,4	445,7	702,5	997,2	1.574,3	1.992,7	2.476,1	3.581,3	4.915,8	6.246,0
	1.800	121,0	274,6	475,5	749,5	1.063,8	1.679,5	2.125,9	2.641,7	3.820,7	5.244,5	6.663,6
	1.900	128,5	291,6	505,0	796,0	1.129,9	1.783,8	2.257,9	2.805,7	4.058,0	5.570,2	7.077,4
	2.000	135,9	308,4	534,1	841,9	1.195,0	1.886,7	2.388,1	2.967,5	4.292,0	5.891,3	7.485,5

Metrische Einheiten

Tabelle 7 und Tabelle 8 können zur Bestimmung des Durchflussbereichs bei Referenzbedingungen für alle Messsystem-Nennweiten verwendet werden. Alle Berechnungen basieren auf einer Bohrungsgröße von Schedule 40, +15 °C und einer typischen Gaszusammensetzung (AGA 8 Amarillo). Diese Werte sollen bei der Nennweitenbestimmung helfen.

Berechnen der Kapazität des Messsystems

Zuerst die Kapazität (Durchflussrate) aus Tabelle 3A für die Nennweite und den Betriebsdruck des Messsystems heraussuchen, um einen Volumendurchfluss bei einer bestimmten Strömungsgeschwindigkeit zu berechnen. Dann die Kapazität mit der gewünschten Strömungsgeschwindigkeit dividiert durch 30,5 m/s multiplizieren, um den gewünschten Volumendurchfluss zu ermitteln.

Beispiel: Bestimmung des Durchflusses pro Stunde bei 21 m/s für eine Nennweite von DN200 und einen Betriebsdruck von 4500 kPag.

$$Durchflussrate = 178 \ MSCMH \ \ Geschwindigkeit = 21 \ m/s \ \ Ergebnis = \frac{178 \ MSCMH \times 21 \ m/s}{30.5 \ m/s} = 122,6 \ MSCMH$$

Tabelle 7: Durchfluss (MSCMH) basierend auf max. Nenngeschwindigkeit [DN100 bis DN600 = 30,5 m/s] [DN750 = 25,9 m/s] [DN900 = 22,9 m/s]

Messsyste weite (DN		100	150	200	250	300	400	450	500	600	750	900
Betriebs-	1.000	10	23	39	62	88	139	175	218	315	432	550
druck (kPag)	1.500	15	33	58	91	129	204	258	320	463	635	809
	2.000	19	44	77	121	171	270	342	425	615	843	1.074
	2.500	24	55	96	151	214	339	429	533	770	1.056	1.345
	3.000	29	67	116	182	259	408	517	642	929	1.274	1.622
	3.500	35	78	136	214	304	480	607	754	1.091	1.496	1.905
	4.000	40	90	156	247	350	553	700	869	1.257	1.724	2.195
	4.500	45	103	178	280	397	627	794	987	1.427	1.957	2.491
	5.000	51	115	199	314	446	704	891	1.107	1.600	2.195	2.794
	5.500	56	128	221	349	495	781	989	1.229	1.778	2.438	3.104
	6.000	62	141	244	384	545	861	1.090	1.354	1.959	2.686	3.420
	6.500	68	154	267	420	597	942	1.193	1.482	2.143	2.939	3.742
	7.000	74	168	290	457	649	1.025	1.297	1.612	2.331	3.197	4.071
	7.500	80	181	314	495	702	1.109	1.404	1.744	2.523	3.460	4.405
	8.000	86	195	338	533	757	1.195	1.512	1.879	2.718	3.727	4.745
	8.500	92	209	363	572	812	1.281	1.622	2.015	2.915	3.997	5.090
	9.000	99	224	388	611	867	1.369	1.733	2.154	3.115	4.272	5.439
	9.500	105	238	413	651	924	1.458	1.846	2.294	3.318	4.550	5.793
	10.000	112	253	438	691	981	1.548	1.960	2.435	3.522	4.830	6.149

Tabelle 8: Durchfluss (MMSCMD) basierend auf max. Nenngeschwindigkeit [DN100 bis DN600 = 30.5 m/s] [DN750 = 25.9 m/s] [DN900 = 22.9 m/s]

Messsys Nennwe		100	150	200	250	300	400	450	500	600	750	900
Be-	1.000	0,240	0,544	0,941	1,484	2,106	3,325	4,208	5,229	7,563	10,372	13,205
triebs- druck	1.500	0,352	0,799	1,384	2,182	3,097	4,889	6,188	7,690	11,122	15,251	19,418
(kPag)	2.000	0,467	1,061	1,837	2,895	4,110	6,489	8,213	10,206	14,761	20,242	25,773
	2.500	0,585	1,328	2,300	3,626	5,147	8,126	10,285	12,780	18,485	25,348	32,273
	3.000	0,706	1,602	2,774	4,373	6,207	9,800	12,404	15,414	22,293	30,571	38,923
	3.500	0,829	1,882	3,259	5,137	7,292	11,512	14,572	18,107	26,189	35,914	45,725
	4.000	0,956	2,168	3,755	5,919	8,401	13,264	16,789	20,862	30,174	41,378	52,682
	4.500	1,085	2,461	4,262	6,718	9,536	15,055	19,056	23,679	34,248	46,964	59,795
	5.000	1,216	2,760	4,780	7,535	10,695	16,885	21,373	26,558	38,412	52,674	67,065
	5.500	1,351	3,066	5,309	8,369	11,880	18,755	23,740	29,499	42,665	58,508	74,492
	6.000	1,489	3,378	5,850	9,221	13,089	20,664	26,156	32,502	47,009	64,463	82,075
	6.500	1,629	3,697	6,401	10,090	14,322	22,612	28,621	35,565	51,439	70,538	89,810
	7.000	1,772	4,021	6,963	10,975	15,579	24,596	31,133	38,686	55,953	76,729	97,692
	7.500	1,917	4,351	7,535	11,877	16,859	26,616	33,690	41,863	60,549	83,031	105,716
	8.000	2,065	4,687	8,116	12,793	18,160	28,670	36,290	45,094	65,221	89,438	113,873
	8.500	2,215	5,028	8,706	13,723	19,480	30,754	38,928	48,372	69,962	95,940	122,151
	9.000	2,368	5,373	9,304	14,666	20,818	32,866	41,601	51,694	74,766	102,528	130,539
	9.500	2,521	5,722	9,909	15,619	22,170	35,002	44,304	55,053	79,625	109,190	139,021
	10.000	2,677	6,075	10,519	16,580	23,535	37,157	47,032	58,442	84,527	115,913	147,581

Titangekapselte T-200-Messwandler

Neues Design ohne Mediumberührung

Ultrasonics T-200-Messwandler wurden speziell für die heute vorherrschenden hohen Anforderungen der verschiedenen Anwendungen konzipiert und bieten selbst unter schwierigsten Umgebungsbedingungen, beispielsweise im Zusammenhang mit Öl enthaltenden Prozessgasen, Nassgas und aggressiven Chemikalien, höchste Leistung.

Wasserstoffkorrosion wird durch die besonders langlebige und stabile Vollmetallausführung ohne Mediumberührung praktisch unmöglich. Darüber hinaus sind T-200-Messwandler einfach in der Anwendung und Wartung. Die innovative Smart-Kapsel des Messwandlers lässt sich separat unter Druck und ohne Spezialwerkzeuge entnehmen, was die Wartung vereinfacht, Anlagenabschaltungen minimiert und die Sicherheit und Benutzerfreundlichkeit maximiert.

T-200-Messwandler sind Standard für Messsysteme mit Nennweiten von DN100 bis DN1050 (4 Zoll bis 42 Zoll), können auf Anfrage jedoch auch in anderen Größen erhältlich sein.

Abbildung 2: T-200-Messwandler-Baugruppe

Merkmale und Vorteile

- Das Messwandlersignal wird durch die patentierte MiniHorn-Array-Technologie mechanisch verstärkt, um Probleme durch eine Signalabschwächung oder Widerhalleffekte zu überwinden.
- Keine Mediumberührung: Der vollständig metallgekapselte Messwandler befindet sich außerhalb des Prozesses und ist gegen das Eindringen von flüssigkeitsgetragenen Schmutzpartikeln und aggressiven Medien wie H₂S geschützt.
- Nachrüstung: Ein Upgrade bestehender Messsysteme mit Messwandlern des Typs T-11/T-12 oder T-21/T-22 ist problemlos möglich.
- Dauerhafte Zuverlässigkeit: Durch die isolierte Messwandlerbauform entsteht eine Barriere gegen die Einwirkung von aggressiven Wasserstoffmedien, was zu einer verlängerten Nutzungsdauer der Messwandlerkomponenten führt.
- Entnahme unter Druck: Die vereinfachte Smart-Kapsel ist leicht entnehmbar, ohne dass die Leitung dafür drucklos gesetzt werden muss oder ein Spezialwerkzeug für die Entnahme unter Hochdruck erforderlich ist.
- Durch die Bauform ohne Mediumberührung ist die Freisetzung von Treibhausgasen bei der Entnahme praktisch unmöglich.
- Eignung für höhere Temperaturen: Dieses Merkmal ermöglicht eine höhere Betriebstemperatur sowie die Reinigung im Einbauzustand.
- Erweiterte Gewährleistung: standardmäßig 3 Jahre

Messwandlerspezifikationen

Produktkompatibilität

Nennweiten von DN100 bis DN1050 (4 Zoll bis 42 Zoll)

Werkstoffe

- Gehäuse aus Ti Gr12 / Halterung aus 17-4PH (Standard)
- Gehäuse aus Ti Gr12 / Halterung aus Edelstahl 316/316L (optional)
- Gehäuse aus Ti Gr12 / Halterung aus Inconel (optional)

Medienarten

■ Kohlenwasserstoffe, industrielle Gase, H₂S (100 %)

Temperatur des Mediums

■ -50 °C bis 125 °C (-58 °F bis +257 °F)

Betriebsdruck

■ 1,03 bis 258,55 bar (15 bis 3.750 psig)

Betriebsfrequenz

■ 125 kHz

Abbildung 3: Messwandler-Smart-Kapsel

Sicherheit und Compliance

Sicherheitsklassifizierungen

Underwriters Laboratories (UL/cUL)

■ Ex-Bereiche – Class 1, Division 1, Groups C und D

CE-Kennzeichnung gemäß Richtlinien

■ Explosionsgefährdete Atmosphären (ATEX)

IECEx-Zulassungen (International Electrotechnical Commission)

Messwesenzulassung

■ Measurement Canada

NMI/MID

- OIML R137 Class 0.5
- MID Class 1.0

Lokales LCD-Display

Die Elektronik der Serie 3410 bietet ein optionales lokales LCD-Display mit einer dreizeiligen Anzeige, die den Variablennamen, den Variablenwert und die Maßeinheit angibt. Die lokalen Displays können mit der MeterLink-Software oder dem Emerson AMS Trex Device mittels HART®-Schnittstellenprotokoll auf einfache Weise konfiguriert werden.

Das lokale Display ermöglicht die Anzeige von bis zu 10 Elementen, die aus 26 Variablen vom Benutzer ausgewählt werden können. Das Display kann so konfiguriert werden, dass die Volumeneinheiten als Ist- oder Tausenderwerte mit einstellbarer Zeitbasis von Sekunden, Stunden oder Tagen skaliert werden. Die Bildlaufrate kann zwischen 1 und 100 Sekunden (standardmäßig 5 Sekunden) eingestellt werden.

Abbildung 4: Lokales LCD-Display

Tabelle 9: Durch den Benutzer wählbare Anzeigevariablen

Variablen	Beschreibung
Volumendurchfluss	Unkorrigiert (Istwert) Korrigiert (Standard oder normal)
Durchschnittliche Durchflussgeschwindigkeit	(keine Beschreibung erforderlich)
Durchschnittliche Schallgeschwindigkeit	(keine Beschreibung erforderlich)
Druck	Fließend, sofern genutzt
Temperatur	Fließend, sofern genutzt
Frequenzausgang	1A, 1B, 2A oder 2B
Frequenzausgang K-Faktor	Kanal 1 oder 2
Analogausgang	1 oder 2
Gesamtvolumina aktueller Tag	Unkorrigiert oder korrigiert (vorwärts oder rückwärts)
Gesamtvolumina vorheriger Tag	Unkorrigiert oder korrigiert (vorwärts oder rückwärts)
Gesamtvolumina gesamt (ohne Rücksetzung)	Unkorrigiert oder korrigiert (vorwärts oder rückwärts)

Eingang/Ausgang

Tabelle 10: E/A-Anschlüsse des CPU-Moduls (max. Leiterquerschnitt 18 AWG)

	E/A-Anschlussart	Menge	Beschreibung
Serielle Kommunikation	Serieller Anschluss RS232/RS485	1	■ Modbus RTU/ASCII
			■ Baudrate 115 kbit/s
			■ Vollduplex RS232/RS485
			■ Halbduplex RS485
	Ethernet-Anschluss (TCP/IP) 100BaseT	1	■ Modbus TCP
Digitaleingang ⁽¹⁾	Kontaktschluss	1	■ Status
			■ Einzelpolarität
Analogeingänge ⁽²⁾	4-20 mA	2	■ Temperatur AI-1 ⁽³⁾
			■ Druck AI-2 ⁽³⁾
Frequenz-/Digitalausgänge	TTL/Offener Kollektor	6	Durch den Benutzer konfigu- rierbar (der Digitaleingang kann als 6. Frequenz-/Digital- ausgang konfiguriert werden)
Analogausgang ⁽²⁾⁽⁴⁾	4-20 mA	1	 Unabhängig konfigurierbarer Analogausgang
			■ Kompatibel mit HART® 7, für HART 5 bitte im Werk anfragen

⁽¹⁾ Die Genauigkeit der Analog/Digital-Wandlung liegt bei ±0,05 % des Endwerts über dem Betriebstemperaturbereich.

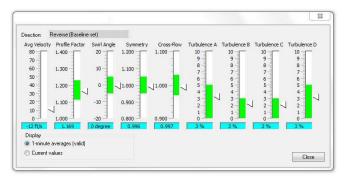
Tabelle 11: Optionales E/A-Erweiterungsmodul

	E/A-Anschlussart	Menge	Beschreibung
Serielle Kommunikation	Serieller Anschluss RS232/RS485	1	■ Modbus RTU/ASCII
			■ Baudrate 115 kbit/s
			■ Halbduplex RS232/RS485
	Ethernet-Switch	3	■ 100BaseT
			■ Drei Ports
Analogeingang	4-20 mA	1	Reserviert für zukünftige Verwendung

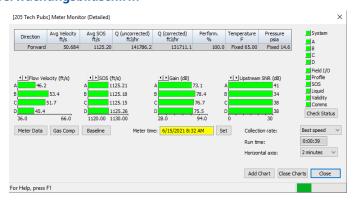
Optionaler E/A-Erweiterungssteckplatz: RS232/RS485 Halbduplex, 2-Leiter ODER 1 E/A-Erweiterungsmodul

⁽²⁾ Eine 24-VDC-Spannungsversorgung ist zur Versorgung der Sensoren mit Spannung erhältlich.

⁽³⁾ AI-1 und AI-2 sind elektronisch isoliert und werden als Stromsenke betrieben. Der Eingang enthält einen Reihenwiderstand für HART®-Kommunikatoren, die für die Sensorkonfiguration angeschlossen werden können.


⁽⁴⁾ Der Nullpunktverschiebungsfehler des Analogausgangs liegt bei ±0,1 % des Endwerts und der Verstärkungsfehler bei ±0,2 % des Endwerts. Die Gesamtausgangsdrift liegt bei ±50 ppm des Endwerts je °C.

Diagnose und Software


Die neue Smart Meter Verification, die ab jetzt in dem neuesten Firmware-Update des Messsystems enthalten ist, ermöglicht eine signifikante Reduzierung des bisherigen Zeitaufwands für die Datenanalyse und Fehlerbehebung. Das eindeutige Ergebnis der Messsystemverifizierung sowie die Ergebnisse in Bezug auf den Messsystem- und Prozessstatus schaffen Vertrauen in die Messergebnisse.

Die Ultraschall-Durchflussmessgeräte nutzen die fortschrittliche MeterLink-Software für eine vereinfachte Überwachung und Fehlerbehebung. Diese fortschrittliche Software zeigt eine Vielzahl an leistungsbasierten Diagnosedaten an, die den Zustand des Messgeräts widerspiegeln. Des Weiteren hilft die dynamische durchflussbasierte Diagnose den Anwendern bei der Erkennung von Durchflussstörungen, die die Messunsicherheit beeinflussen können. Die neueste MeterLink-Version wurde für das Zusammenspiel mit der Smart Meter Verification optimiert und ermöglicht die einfache Erstellung von monatlich geplanten oder bedarfsgesteuert ausgelösten SMV-Berichten.

Abbildung 5: MeterLink Baseline Viewer

Abbildung 6: MeterLink-Überwachungsbildschirm

- Die MeterLink-Software kann kostenlos heruntergeladen werden
- MeterLink ist für die Konfiguration von Messumformern erforderlich
 - Die Messgeräte k\u00f6nnen au\u00dferdem mit dem AMS Device Manager oder einem Trex Device konfiguriert werden, wenn HART\u00e9 verwendet wird
- Die Verbindung von MeterLink zu den Messgeräten erfolgt über Ethernet (empfohlen), RS232 oder RS485 Vollduplex
- Unterstützt Microsoft® Windows 7, 8.1 und 10
- Microsoft Office 2010-2019

Tabelle 12: Merkmale des Messsystems sowie von MeterLink und Net Monitor⁽¹⁾

		Messsystem	Zugriff über Me- terLink	Zugriff über Net Monitor
SMV	Geplante oder bedarfsgesteuert ausgelöste Berichte (PDF oder XML)	•	•	•
	Eindeutige Ergebnisse der Messverifizierung	•	•	•
	Automatische Berichterstellung nach Messsystemgruppen			•
	Status des letzten geplanten SMV-Ergebnisses mit Übersicht über mehrere Messsysteme			•
	Bündelung aller geplanten Messsystemberichte		•	•
	Alarmpriorisierung	•	•	•
Betrieb	Konfigurierbare Tabelle der Modbus GC-Komponentendaten	•		
	Schallgeschwindigkeitsvergleich ⁽²⁾	•	•	
	Messwandler-Zustandsüberwachung	•	•	
	Baseline Viewer		•	
	Überwachungsbildschirm		•	
	Mehrere Darstellungen mit grünen Grenzwert- bändern		•	
	Anzeige von Wellenformen		•	
	Schallgeschwindigkeitsrechner ⁽²⁾		•	
	Hilfethemen/Anleitung für Fehlerbehebung		•	
	Wartungsprotokolle		•	
Historie	Protokolle auf Stundenbasis (180 Tage) und Tagesbasis (5 Jahre)	•	•	
	Trenddarstellung von Wartungsprotokollen		•	
	Grafische Darstellung stündlicher/täglicher Protokolle		•	
Konfiguration	Assistent für die Einrichtung im Feld und die Base- line-Konfiguration		•	
	Benutzername in Audit-Log identifiziert	•	•	
	Schreibschutzschalter	•		
	Konfigurationsvergleich über Protokolle		•	
	GC Master - Modbus Serial/TCP	•		
	Modbus TCP Slave	•		
Alarme	Protokolle für Alarm/Audit/System	•	•	
	Alarm bei Ablagerungen	•	•	
	Alarm bei Verstopfungen	•	•	
	Alarm bei abnormalem Profil	•	•	
	Alarm bei erfasster Flüssigkeit		•	
	Zwischengespeicherte Alarme		•	
	Alarmanzeige mit Angabe zum Schweregrad		•	

Tabelle 12: Merkmale des Messsystems sowie von MeterLink und Net Monitor⁽¹⁾ (Fortsetzung)

	•	Zugriff über Me- terLink	Zugriff über Net Monitor
Alarm bei erkanntem Rückwärtsdurchfluss	•	•	

⁽¹⁾ Net Monitor ist eine automatisch mit MeterLink verfügbare Anwendungen, mit der die Anwender auf sämtliche Ultraschall-Durchflussmesssysteme, die Teil eines Netzwerks sind, zugreifen und diese überwachen können.

⁽²⁾ Unterstützung von AGA 10 2003 und GERG-2008 (AGA 8 Part 2, 2017).

Sicherheit und Compliance

Das SeniorSonic 3414 Ultraschall-Durchflussmesssystem für Gase entspricht den weltweiten Industrienormen für elektrische und eigensichere Zertifizierungen und Zulassungen. Eine vollständige Liste aller Behörden und Zertifizierungen erhalten Sie auf Anfrage von einem Emerson-Spezialisten für Ultraschallmesssysteme.

Sicherheitsklassifizierungen

Underwriters Laboratories (UL/cUL)

■ Ex-Bereiche – Class I, Division 1, Groups C und D

CE-Kennzeichnung gemäß Richtlinien

- Explosionsgefährdete Atmosphären (ATEX)
- Zertifikat Demko II ATEX 1006133X
- Kennzeichnung $(40 \text{ °C} \le T \le +60 \text{ °C})$ II 2G Ex db ia IIB T4 Gb (-40 °C $\le T \le +60 \text{ °C})$
- Druckgeräterichtlinie (PED)
- Elektromagnetische Verträglichkeit (EMV)

INMETRO

- Zertifikat UL-BR 16.0144X
- Kennzeichnung Ex db ia IIB T4 Gb

IECEx-Zulassungen (International Electrotechnical Commission)

- Zertifikat 11.0004X
- Kennzeichnung Ex db ia IIB T4 Gb

Canadian Registration Number

■ Zertifikat – 0F14855

Abbildung 7: Standardmäßiges Elektronikgehäuse aus Aluminium mit optionalem Display für das SeniorSonic 3414 Messsystem

Schutzarten durch Gehäuse

Aluminium

- NEMA 4
- IP66 nach EN 60529

Edelstahl

- NEMA 4X
- IP66 nach EN 60529

Messwesenzulassung

ISO 17089-1:2010 (E)

OIML

- OIML R137-1 & 2 Ausgabe 2012(E)
- Class 0.5

MID

- Richtlinie 2014/32/EU (MID MI-002)
- Class 1.0

China Pattern Approval (CPA)

Measurement Canada

■ Zulassung – AG-0623

Abbildung 8: Optionales, größeres nachrüstbares Elektronikgehäuse für das SeniorSonic 3414 Messsystem (kein optionales Display verfügbar)

Betriebsgrenzen

Wenn Ihre Anforderungen außerhalb der unten angegebenen Betriebsgrenzen für T-21/T-41/T-22/T-200 Messwandler liegen, wenden Sie sich bitte an einen Emerson-Spezialisten für Ultraschallprodukte.

Tabelle 13: Empfohlene Maximalgeschwindigkeit für Messsysteme mit einer Nennweite von 12 Zoll und weniger (US-Einheiten)

Messsystem-Nennweite (Zoll)	Maximale Strömungsgeschwindigkeit bei 0 psig oder mehr (Fuß/s) ⁽¹⁾	Kapazität bei maximaler Strömungsge- schwindigkeit (ACFH) ⁽¹⁾
4	100	31.826
6	100	72.226
8	100	125.068
10	100	197.136
12	100	282.743

⁽¹⁾ Um mit Messsystem-Nennweiten von DN300 (12 Zoll) und weniger 0 bis 345 kPag (0 bis 100 psig) zu erreichen, müssen isolierte Messwandler-Befestigungen mit T-22 Messwandlern kombiniert werden.

Tabelle 14: Empfohlene Maximalgeschwindigkeit für Messsysteme mit einer Nennweite von 16 Zoll und mehr (US-Einheiten)

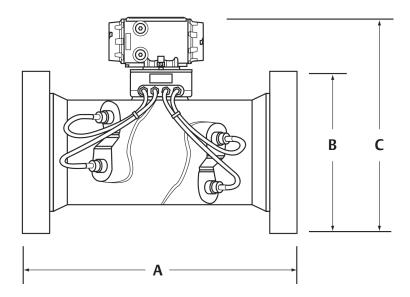
Messsystem-Nennweite (Zoll)	Maximale Strömungs- geschwindigkeit bei 50 psig (Fuß/s)	Kapazität zwischen 50 und 100 psig (ACFH) ⁽¹⁾	Maximale Strömungs- geschwindigkeit bei 100 psig (Fuß/s)	Kapazität bei ma- ximaler Strömungsge- schwindigkeit (ACFH) ⁽¹⁾
16	80	228.318	100	456.635
18	80	292.131	100	584263
20	80	363.799	100	727.598
24	80	530.696	100	1.061.392
30	45	755.952	85	1.427.909
36	37,5	914.912	75	1.829.824

⁽¹⁾ Die Kapazitätswerte gelten für einen Messsystem-Innendurchmesser entsprechend Schedule 40 (oder STD).

Tabelle 15: Empfohlene Maximalgeschwindigkeit für Messsysteme mit einer Nennweite von DN300 und weniger (metrische Einheiten)

Messsystem-Nennweite (DN)	Maximale Strömungsgeschwindigkeit bei 0 kPag oder mehr (m/s) ⁽¹⁾	Kapazität bei maximaler Strömungsgeschwindigkeit (ACMH) ⁽¹⁾
100	30,5	901
150	30,5	2.045
200	30,5	3.541
250	30,5	5.582
300	30,5	8.006

⁽¹⁾ Um mit Messsystem-Nennweiten von DN300 (12 Zoll) und weniger 0 bis 345 kPag (0 bis 100 psig) zu erreichen, müssen isolierte Messwandler-Befestigungen verwendet werden.


Tabelle 16: Empfohlene Maximalgeschwindigkeit für Messsysteme mit einer Nennweite von DN400 und mehr (metrische Einheiten)

Messsystem-Nennweite (DN)	Maximale Strömungs- geschwindigkeit bei 345 kPag (m/s)	Kapazität zwischen 345 und 689 kPag (ACMH) ⁽¹⁾	Maximale Strömungs- geschwindigkeit bei 689 kPag oder mehr (m/s)	Kapazität bei ma- ximaler Strömungs- geschwindigkeit (ACMH) ⁽¹⁾
400	15,2	6.465	30,5	12.930
450	15,2	7.917	30,5	15.835
500	15,2	10.301	30,5	20.603
600	15,2	15.027	30,5	30.055
750	13,7	21.406	26	40.433
900	11,4	25.907	23	51.814

⁽¹⁾ Die Kapazitätswerte gelten für einen Messsystem-Innendurchmesser entsprechend Schedule 40 (oder STD).

Gewichte und Abmessungen

Abbildung 9: Schlüssel für die Messsystemabmessungen

Zur Bestimmung der Werte von A, B und C siehe Tabelle 17 und Tabelle 18.

Tabellen

Die Zeichnung mit den Hauptabmessungen des Messsystems (Abbildung 9) zeigt die Abmessungen der Messsystemkomponenten, die den Buchstaben A, B und C in der nachfolgenden Tabelle entsprechen. Alle Gewichte und Abmessungen basieren auf dem Standard-Elektronikgehäuse. Die zertifizierte Zulassungszeichnung wird die tatsächlichen Gewichte und Abmessungen enthalten.

Tabelle 17: Gewichte und Abmessungen (US-Einheiten) [Nennweiten 4 Zoll bis 6 Zoll, Anschlusswinkel = 45°] [Nennweiten 8 Zoll bis 26 Zoll, Anschlusswinkel = 60°] [Nennweiten 30 Zoll bis 36 Zoll, Anschlusswinkel = 75°]

Nennweite	(Zoll)	4	6	8	10	12	14	16	18	20	24	26	30	36
300 ANSI	Gewicht (lb)	365	445	445	605	765	CF	1255	CF	1875	2415	CF	CF	CF
	A (Zoll)	29	29,5	21,5	24,5	26	CF	30	31,5	35,5	39	40,5	CF	CF
	B (Zoll)	10	12,5	15	17,5	20,5	CF	25,5	28	30,5	36	38,3	CF	CF
	C (Zoll)	18,6	20,7	22,9	25,4	27,9	CF	32,1	34,2	36,6	41,6	44,9	CF	CF
600 ANSI	Gewicht (lb)	395	515	665	785	915	CF	1475	1655	2205	3235	CF	5135	CF
	A (Zoll)	29	29,5	21,5	24,5	26	CF	30	31,5	35,5	39	47	38,8	43,75
	B (Zoll)	10,8	14	16,5	20	22	CF	27	29,3	32	37	40	44,5	51,8
	C (Zoll)	19	21,4	23,7	26,7	28,6	CF	32,8	34,8	37,3	42,1	45,6	50,2	56,2
900 ANSI	Gewicht (lb)	394	754	814	1194	1644	CF	2644	2414	3484	5824	CF	6740	CF
	A (Zoll)	31	37	27,5	30,5	34,5	CF	41,5	36	37	52	CF	45,5	CF
	B (Zoll)	11,5	15	18,5	21,5	24	CF	27,8	31	33,8	41	CF	48,5	CF

Tabelle 17: Gewichte und Abmessungen (US-Einheiten) [Nennweiten 4 Zoll bis 6 Zoll, Anschlusswinkel = 45°] [Nennweiten 8 Zoll bis 26 Zoll, Anschlusswinkel = 60°] [Nennweiten 30 Zoll bis 36 Zoll, Anschlusswinkel = 75°] (Fortsetzung)

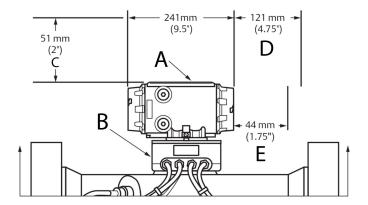

Nennweite	(Zoll)	4	6	8	10	12	14	16	18	20	24	26	30	36
	C (Zoll)	19,3	22,3	25,2	27,7	30,4	CF	34,1	36,3	39,5	45,3	CF	52,4	CF
1500 ANSI	Gewicht (lb)	434	854	914	1464	2204	CF	3584	CF	CF	CF	CF	CF	CF
	A (Zoll)	31	37	27,5	30,5	34,5	CF	41,5	CF	60	68	CF	CF	CF
	B (Zoll)	12,3	15,5	19	23	26,5	CF	32,5	CF	38,8	46	CF	CF	CF
	C (Zoll)	19,7	22,4	25,4	28,4	31,7	CF	36,4	CF	42	47,8	CF	CF	CF

Tabelle 18: Gewichte und Abmessungen (metrischen Einheiten) [Nennweiten DN100 bis DN150, Anschlusswinkel = 45°] [Nennweiten DN200 bis DN650, Anschlusswinkel = 60°] [Nennweiten DN750 bis DN900, Anschlusswinkel = 75°]

Nennwe	ite (DN)	100	150	200	250	300	350	400	450	500	600	650	750	900
DN50	Gewicht (kg)	166	202	202	274	347	CF	569	CF	850	1095	CF	CF	CF
	A (mm)	736,6	749,3	546,1	622,3	660,4	CF	762	800,1	901,7	990,6	1029	CF	CF
	B (mm)	254	318	381	444,5	520,7	CF	647,7	711,2	774,7	914,4	973	CF	CF
	C (mm)	472	526	582,7	645	709	CF	814,3	869	930	1057	1141	CF	CF
DN100	Gewicht (kg)	179	234	302	356	415	CF	669	751	1000	1467	CF	2329	CF
	A (mm)	737	749	546	622	660	CF	762	800	902	991	1194	985	1111,2
	B (mm)	273	356	419	508	559	CF	686	743	812,8	939,8	1016	1130	1314,5
	C (mm)	481,3	544,6	601,7	677,9	727,2	CF	833,4	884,5	947,7	1068,6	1157,5	1275	1428
DN150	Gewicht (kg)	179	342	370	542	746	CF	1199	1095	1580	2642	CF	3057	CF
	A (mm)	787,4	940	698,5	774,7	876,3	CF	1054	914,4	939,8	1321	CF	1156	CF
	B (mm)	292,1	381	469,9	546,1	609,6	CF	705	787,4	857,3	1041,4	CF	1231,9	CF
	C (mm)	490	566	640	703,3	773,2	CF	866	922,3	1002	1150,9	CF	1332	CF
DN250	Gewicht (kg)	197	387	415	664	1000	CF	1626	CF	CF	CF	CF	CF	CF
	A (mm)	787	940	699	775	876	CF	1054	CF	1524	1727	CF	CF	CF
	B (mm)	292	381	470	546	610	CF	706	CF	984,3	1168	CF	CF	CF
	C (mm)	500	569	645	721	805	CF	925	CF	1066	1213	CF	CF	CF

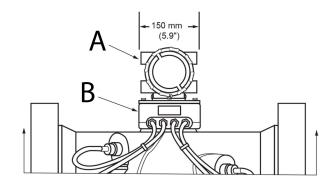
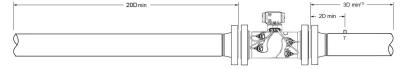

CF = Liefermöglichkeit auf Anfrage

Abbildung 10: Position des Schutzgehäuses

- A. Schutzgehäuse
- B. Gehäusebasis
- C. Ausbau
- D. Ausbau der Platine
- E. Ausbau des Abschlussstücks

Abbildung 11: Optionale Position des Schutzgehäuses⁽⁹⁾


- A. Schutzgehäuse
- B. Gehäusebasis

Empfohlene Installation

Empfohlene Ein- und Auslaufstrecken

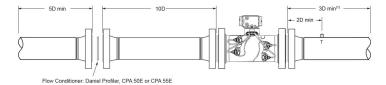

Die nachfolgenden Zeichnungen zeigen die empfohlenen Mindestlängen für Ein- und Auslaufstrecken bei der Installation von SeniorSonic 3414 Ultraschall-Durchflussmesssystemen für Gase. Bitte nehmen Sie Kontakt mit einem Emerson-Spezialisten für Ultraschalltechnik auf, um Installationsempfehlungen in Bezug auf Ihre spezifische Anwendung zu erhalten. Andere Längen oder Strömungsgleichrichter können verwendet werden.

Abbildung 12: Empfohlene Ein- und Auslaufstrecken für Ultraschall-Messsysteme für Gas (ohne Strömungsgleichrichter)


3D min.⁽¹⁾ = Für zusätzliche Entnahmestellen (Probenentnahme, Prüfstelle usw.) ist ggf. eine zusätzliche Leitungslänge erforderlich.

Abbildung 13: Empfohlene Ein- und Auslaufstrecken für Ultraschall-Messsystem für Gase mit Strömungsgleichrichter

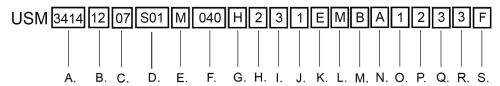

3D min.⁽¹⁾ = Für zusätzliche Entnahmestellen (Probenentnahme, Prüfstelle usw.) ist ggf. eine zusätzliche Leitungslänge erforderlich.

Abbildung 14: Empfohlene Ein- und Auslaufstrecken für Ultraschall-Messsysteme für Gase mit Strömungsgleichrichter (kompakte Installation)⁽¹⁰⁾

3D min.⁽¹⁾ = Für zusätzliche Entnahmestellen (Probenentnahme, Prüfstelle usw.) ist ggf. eine zusätzliche Leitungslänge erforderlich.

Abbildung 15: Empfohlene Ein- und Auslaufstrecken für Ultraschall-Messsysteme für Gase mit Durchfluss in beiden Richtungen und Strömungsgleichrichtern (kompakte Installation)⁽¹¹⁾

⁽¹⁰⁾ Längere Einlaufstrecken können die Langzeit-Baseline-Diagnosestabilität erhöhen. Die Konfiguration gilt nicht für OIML-Installationen.


⁽¹¹⁾ Längere Einlaufstrecken können die Langzeit-Baseline-Diagnosestabilität erhöhen. Die Konfiguration gilt nicht für OIML-Installationen.

Anmerkung:

- Die besten Ergebnisse werden mit einem Strömungsgleichrichter erzielt.
- D = Nennweite in Zoll (d. h. Nennweite 6 Zoll; 10D = 60 Zoll)
- T = Temperaturmesspunkt
- Druckmesspunkt am Gehäuse des Messgeräts

Konfigurationscode

Dies ist ein Beispiel für einen Konfigurationscode. Diese Übersicht dient lediglich zu Informationszwecken. Nicht jede Option ist aufgeführt und einige Optionen sind von anderen abhängig. Wenden Sie sich bitte an das Werk, um Hilfe bzgl. der Auslegung Ihres optimalen Messsystems zu erhalten.

A. Gerät	K. Montage der Elektronik
B. Nennweite	L. CPU/Displays/Tasten
C. Druckstufe	M. Erweiterungsmodul
D. Flanschtyp	N. Kabelloses System
E. Gehäuse- und Flanschwerkstoff	O. Kennzeichnungsformat
F. Schedule (Leitungsbohrung)	P. Sprache für Kennzeichnungen
G. Messwandler-Baugruppe	Q. Zertifizierung nach Druckgeräterichtlinie
H. Gehäusetyp	R. Elektrische Zulassungen
I. Druckentnahmestellen	S. Messwesenzulassung
J. Typ des Kabelschutzrohrs	

Kategorie	Code	Beschreibung			
Gerät	3414	3414 mit vier Messpfaden			
Nennweite	04	DN100 (4 Zoll)			
	06	DN150 (6 Zoll)			
	08	DN200 (8 Zoll)			
	10	DN250 (10 Zoll)			
	12	DN300 (12 Zoll)			
	14	DN350 (14 Zoll)			
	16	DN400 (16 Zoll)			
	18	DN400 (18 Zoll)			
	20	DN500 (20 Zoll)			
	24	DN600 (24 Zoll)			
	26	DN650 (26 Zoll)			
	30	DN750 (30 Zoll)			
	36	DN900 (36 ZoII) ⁽¹⁾			

(1) Bei Messsystem-Nennweiten über DN900 (36 Zoll) Kontakt mit dem Werk aufnehmen.

Druckstufe	03	PN 50 / ANSI 300		
	05	PN 50 / ANSI 300 PN 100 / ANSI 600 PN 150 / ANSI 900		
	06	PN 150 / ANSI 900		

	07	PN 250 / ANSI 1500
	08	PN 420 / ANSI 2500
Kategorie	Code	Beschreibung
Flanschtyp	S01	RF / RF
	S02	RTJ / RTJ
	S03	FEFA / FEFA
	S04	Kompaktflansch (Spezialausführung)
Gehäuse- und Flanschwerk- stoff	M ⁽¹⁾	Gussausführung: LCC / Kohlenstoffstahl / Edelstahl / Duplex
	F ⁽¹⁾	Geschmiedet: Kohlenstoffstahl / Edelstahl 316 / Duplex-Edel-

stahl

(1) Bezüglich spezieller Modellcodes für gewünschte Werkstoffe bitte Kontakt mit dem Werk aufnehmen.

Schedule (Leitungsbohrung)	LW0	Schedule LW
	020	Schedule 20
	030	Schedule 30
	040	Schedule 40
	060	Schedule 60
	080	Schedule 80
	100	Schedule 100
	120	Schedule 120
	140	Schedule 140
	160	Schedule 160
	STD	Schedule STD
	XS0	Schedule XS
Messwandler-Baugruppe	1	T200 (-50 °C bis +12 °C) - standardmäßige Befestigung/Halterung aus 17-4PH, O-Ring aus NBR
	2	T200 (-50 °C bis +12 °C) - standardmäßige Befestigung/Halterung aus 17-4PH, O-Ring aus FKM
	4	T200 (-40 °C bis +125 °C) – Befestigung/Halterung aus Inco- nel, O-Ring aus FKM ⁽¹⁾
	5	T200 (-40 °C bis +125 °C) - optionale Befestigung/Halterung, (316/316L), NBR ⁽¹⁾
	6	T200 (-40 °C bis +125 °C) - standardmäßige Befestigung/Halterung, (316/316L), FKM ⁽¹⁾
	G	T-21 (-20 °C bis +100 °C) – standardmäßige Befestigungen/Halterungen, O-Ring aus NBR
	I	T-22 (-50 °C bis +100 °C) – isolierte standardmäßige Befestigungen/Halterungen aus Edelstahl 316L, O-Ring aus NBR
	J	T-21 (-20 °C bis +100 °C) – Befestigungen aus Inconel/Halterungen aus Edelstahl 316L, O-Ring aus NBR
	L	T-21 (-20 °C bis +100 °C) – Befestigungen aus Inconel/Halterungen aus Inconel, O-Ring aus FKM
	N	T-41 (-50 °C bis +100 °C) – standardmäßige Befestigungen/Halterungen, O-Ring aus NBR

0	T-21 (-20 °C bis + 100 °C) – Befestigungen aus Inconel/Halterungen aus Edelstahl 316L, O-Ring aus FKM
Z	T-22 (-40 °C bis +100 °C) - isolierte Befestigungen aus Inco- nel/Halterungen aus Inconel, O-Ring aus FKM

Kategorie	Code	Beschreibung
Gehäuseausführung	1	Aluminium (Standard)
	2	Edelstahl (optional)
	3	Aluminium (optional) (Nachrüstung) ⁽¹⁾

(1) Die Auswahlmöglichkeiten D, E und F für das Erweiterungsmodul sind nur für ein Aluminium-Nachrüstgehäuse verfügbar. Das Nachrüstgehäuse ist nur in Kombination mit einer elektrische Zulassung 1 oder 2 verfügbar.

Druckentnahmestellen	1	½ Zoll NPT
Didckentnanmestenen		
	3	Pipette
Typ des Kabelschutzrohrs	1	3/4 Zoll NPT
	2	M20 (Reduzierstücke erforderlich)
Montage der Elektronik	А	Integrierte Montage (bis +60 °C)
	В	Abgesetzte Montage mit Kabeln mit einer Länge von 15 Fuß
	Е	Integrierte Montage (bis 60 °C) mit armierten Kabeln
	F	Abgesetzte Montage mit einem armierten, abgedeckten Kabel mit einer Länge von 5 Fuß
CPU/Display	J	E/A Typ 4 (6 Frequenz-/Digitalausgänge, 1 Analogausgang)
	К	E/A-Typ 4 (6 Frequenz-/Digitalausgänge, 1 Analogausgang)/Display
Erweiterungsmodul	А	-
	В	Eine serielle Schnittstelle RS232
	С	Eine serielle Schnittstelle RS485
	D	Zwei serielle Schnittstellen RS232 ⁽¹⁾
	E	Zwei serielle Schnittstellen RS485 (2-Leiter-Version) ⁽¹⁾
	F	Serielle Schnittstelle RS232 und serielle Schnittstelle RS485<(1)
	G	E/A-Erweiterungsmodul
	Н	Serielle Schnittstelle RS-232 und E/A-Erweiterungsmodul ⁽¹⁾
	J	Serielle Schnittstelle RS-485 (2-Leiter) und E/A-Erweiterungs-modul ⁽¹⁾

(1) Die Auswahlmöglichkeiten D, E und F für das Erweiterungsmodul sind nur für ein Aluminium-Nachrüstgehäuse verfügbar. Das Nachrüstgehäuse ist nur in Kombination mit einer elektrische Zulassung 1 oder 2 verfügbar.

Kabelloses System	A	-
	В	тним

Kategorie	Code	Beschreibung
Kennzeichnungsformat	1	Zoll/ANSI/US-Einheiten
	2	Zoll/ANSI/metrisch

Kategorie	Code	Beschreibung
	3	DN/PN/US-Einheiten
	4	DN/PN/metrisch
Sprache für Kennzeichnungen	1	Englisch
	2	Französisch
	3	Russisch
	4	Chinesisch
Zertifizierung nach Druckgerä-	1	-
terichtlinie	2	Druckgeräterichtlinie (PED) (elektrische Zulassung 2 muss ausgewählt werden)
	3	CRN (Canadian Boiler Branch)
	4	Russland (EAC)
Elektrische Zulassungen	1	UL/c-UL
	2	ATEX/IECEx
	3	INMETRO
	4	Russland (EAC)
Messwesenzulassung	A	-
	В	Europäische Union - Messgeräterichtlinie (MID)
	С	China (CPA-2005-F101)
	D	Brasilien (INMETRO)
	F	Russland (EAC)

Weiterführende Informationen: Emerson.com

 $^{\circ}$ 2023 Emerson. Alle Rechte vorbehalten.

Die Verkaufsbedingungen von Emerson sind auf Anfrage erhältlich. Das Emerson Logo ist eine Marke und Dienstleistungsmarke der Emerson Electric Co. Rosemount ist eine Marke der Emerson Unternehmensgruppe. Alle anderen Marken sind Eigentum ihres jeweiligen Inhabers.

